Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the amplitude, period, and phase shift of the trigonometric equation:
[tex]\[ y^{\prime}=4-\frac{4}{3} \sin (8 x-6) \][/tex]
we follow a series of steps to analyze the given function:
### 1. Amplitude:
The amplitude of a sine function, [tex]\( y = A \sin(Bx + C) \)[/tex], is determined by the coefficient in front of the sine function. For the given equation, the sine term is [tex]\(-\frac{4}{3} \sin(8x - 6)\)[/tex].
The amplitude is the absolute value of the coefficient of the sine function.
[tex]\[ \text{Amplitude} = \left| -\frac{4}{3} \right| = \frac{4}{3} \][/tex]
### 2. Period:
The period of a sine function, [tex]\( y = A \sin(Bx + C) \)[/tex], is computed by the formula:
[tex]\[ \text{Period} = \frac{2\pi}{|B|} \][/tex]
Here, [tex]\( B \)[/tex] is the coefficient of [tex]\( x \)[/tex] inside the sine function. In the given equation, [tex]\( B = 8 \)[/tex].
[tex]\[ \text{Period} = \frac{2\pi}{8} = \frac{\pi}{4} \][/tex]
### 3. Phase Shift:
The phase shift of a sine function, [tex]\( y = A \sin(Bx + C) \)[/tex], occurs due to the term [tex]\( C \)[/tex]. The formula for the phase shift is:
[tex]\[ \text{Phase Shift} = -\frac{C}{B} \][/tex]
In the equation, the term [tex]\( 8x - 6 \)[/tex] can be compared to [tex]\( Bx + C \)[/tex], where [tex]\( C = -6 \)[/tex] and [tex]\( B = 8 \)[/tex].
[tex]\[ \text{Phase Shift} = -\frac{-6}{8} = \frac{6}{8} = \frac{3}{4} \][/tex]
Since the phase shift is positive, it means the graph is shifted to the right.
### Final Answer:
Combining all the information, we have:
- Amplitude: [tex]\( \frac{4}{3} \)[/tex]
- Period: [tex]\( \frac{\pi}{4} \)[/tex]
- Phase Shift: [tex]\( \frac{3}{4} \)[/tex] (shifted to the right)
[tex]\[ y^{\prime}=4-\frac{4}{3} \sin (8 x-6) \][/tex]
we follow a series of steps to analyze the given function:
### 1. Amplitude:
The amplitude of a sine function, [tex]\( y = A \sin(Bx + C) \)[/tex], is determined by the coefficient in front of the sine function. For the given equation, the sine term is [tex]\(-\frac{4}{3} \sin(8x - 6)\)[/tex].
The amplitude is the absolute value of the coefficient of the sine function.
[tex]\[ \text{Amplitude} = \left| -\frac{4}{3} \right| = \frac{4}{3} \][/tex]
### 2. Period:
The period of a sine function, [tex]\( y = A \sin(Bx + C) \)[/tex], is computed by the formula:
[tex]\[ \text{Period} = \frac{2\pi}{|B|} \][/tex]
Here, [tex]\( B \)[/tex] is the coefficient of [tex]\( x \)[/tex] inside the sine function. In the given equation, [tex]\( B = 8 \)[/tex].
[tex]\[ \text{Period} = \frac{2\pi}{8} = \frac{\pi}{4} \][/tex]
### 3. Phase Shift:
The phase shift of a sine function, [tex]\( y = A \sin(Bx + C) \)[/tex], occurs due to the term [tex]\( C \)[/tex]. The formula for the phase shift is:
[tex]\[ \text{Phase Shift} = -\frac{C}{B} \][/tex]
In the equation, the term [tex]\( 8x - 6 \)[/tex] can be compared to [tex]\( Bx + C \)[/tex], where [tex]\( C = -6 \)[/tex] and [tex]\( B = 8 \)[/tex].
[tex]\[ \text{Phase Shift} = -\frac{-6}{8} = \frac{6}{8} = \frac{3}{4} \][/tex]
Since the phase shift is positive, it means the graph is shifted to the right.
### Final Answer:
Combining all the information, we have:
- Amplitude: [tex]\( \frac{4}{3} \)[/tex]
- Period: [tex]\( \frac{\pi}{4} \)[/tex]
- Phase Shift: [tex]\( \frac{3}{4} \)[/tex] (shifted to the right)
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.