Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the equivalent expression for [tex]\(\frac{4 f^2}{3} + \frac{1}{4 f}\)[/tex], let's go through a step-by-step simplification process using fraction algebra.
1. Start with the given expression:
[tex]\[ \frac{4 f^2}{3} + \frac{1}{4 f} \][/tex]
2. To combine these two fractions, we need to find a common denominator. The denominators are 3 and [tex]\(4f\)[/tex]. The common denominator will be [tex]\(12f\)[/tex] (since [tex]\(12f\)[/tex] is the least common multiple of 3 and [tex]\(4f\)[/tex]).
3. Rewrite each fraction with [tex]\(12f\)[/tex] as the denominator:
[tex]\[ \frac{4 f^2}{3} = \frac{4 f^2 \cdot 4 f}{3 \cdot 4 f} = \frac{16 f^3}{12 f} \][/tex]
[tex]\[ \frac{1}{4 f} = \frac{1 \cdot 3}{4 f \cdot 3} = \frac{3}{12 f} \][/tex]
4. Now we can add the two fractions together, since they have a common denominator:
[tex]\[ \frac{16 f^3}{12 f} + \frac{3}{12 f} = \frac{16 f^3 + 3}{12 f} \][/tex]
5. Therefore, the simplified form of the given expression is:
[tex]\[ \frac{16 f^3 + 3}{12 f} \][/tex]
Now we can compare this simplified expression with the given multiple-choice options:
- [tex]\(\frac{16 t^3}{3}\)[/tex]
- [tex]\(\frac{f}{3}\)[/tex]
- [tex]\(\frac{3}{16 f^3}\)[/tex]
- [tex]\(\frac{3}{7}\)[/tex]
The correct match is [tex]\(\frac{16 f^3 + 3}{12 f}\)[/tex], which is not explicitly listed among the original options. This appears to be an error in the options provided, as none match the simplified expression exactly. Based on the simplification process, the equivalent expression is indeed:
[tex]\[ \frac{16 f^3 + 3}{12 f} \][/tex]
1. Start with the given expression:
[tex]\[ \frac{4 f^2}{3} + \frac{1}{4 f} \][/tex]
2. To combine these two fractions, we need to find a common denominator. The denominators are 3 and [tex]\(4f\)[/tex]. The common denominator will be [tex]\(12f\)[/tex] (since [tex]\(12f\)[/tex] is the least common multiple of 3 and [tex]\(4f\)[/tex]).
3. Rewrite each fraction with [tex]\(12f\)[/tex] as the denominator:
[tex]\[ \frac{4 f^2}{3} = \frac{4 f^2 \cdot 4 f}{3 \cdot 4 f} = \frac{16 f^3}{12 f} \][/tex]
[tex]\[ \frac{1}{4 f} = \frac{1 \cdot 3}{4 f \cdot 3} = \frac{3}{12 f} \][/tex]
4. Now we can add the two fractions together, since they have a common denominator:
[tex]\[ \frac{16 f^3}{12 f} + \frac{3}{12 f} = \frac{16 f^3 + 3}{12 f} \][/tex]
5. Therefore, the simplified form of the given expression is:
[tex]\[ \frac{16 f^3 + 3}{12 f} \][/tex]
Now we can compare this simplified expression with the given multiple-choice options:
- [tex]\(\frac{16 t^3}{3}\)[/tex]
- [tex]\(\frac{f}{3}\)[/tex]
- [tex]\(\frac{3}{16 f^3}\)[/tex]
- [tex]\(\frac{3}{7}\)[/tex]
The correct match is [tex]\(\frac{16 f^3 + 3}{12 f}\)[/tex], which is not explicitly listed among the original options. This appears to be an error in the options provided, as none match the simplified expression exactly. Based on the simplification process, the equivalent expression is indeed:
[tex]\[ \frac{16 f^3 + 3}{12 f} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.