Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the exact value of the expression [tex]\(\csc \left(\sin^{-1}\left(\frac{1}{2}\right)\right)\)[/tex], we can go through the following steps:
1. Identify the angle [tex]\( \theta \)[/tex]:
[tex]\[ \theta = \sin^{-1}\left(\frac{1}{2}\right) \][/tex]
This represents the angle whose sine value is [tex]\(\frac{1}{2}\)[/tex].
2. Find the angle [tex]\(\theta\)[/tex]:
We know from basic trigonometry that [tex]\(\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\)[/tex]. Therefore,
[tex]\[ \theta = \frac{\pi}{6} \][/tex]
3. Express the given expression in terms of [tex]\( \theta \)[/tex]:
Substitute [tex]\(\theta = \frac{\pi}{6}\)[/tex] into the given expression:
[tex]\[ \csc \left(\sin^{-1}\left(\frac{1}{2}\right)\right) = \csc\left(\frac{\pi}{6}\right) \][/tex]
4. Recall the definition of cosecant:
The cosecant of an angle is the reciprocal of its sine. Therefore,
[tex]\[ \csc\left(\frac{\pi}{6}\right) = \frac{1}{\sin\left(\frac{\pi}{6}\right)} \][/tex]
5. Substitute the sine value:
We already know that [tex]\(\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\)[/tex]. So,
[tex]\[ \csc\left(\frac{\pi}{6}\right) = \frac{1}{\frac{1}{2}} = 2 \][/tex]
Therefore, the exact value of the expression [tex]\(\csc \left(\sin^{-1}\left(\frac{1}{2}\right)\right)\)[/tex] is [tex]\(2\)[/tex]. The intermediate value of the angle [tex]\(\sin^{-1}\left(\frac{1}{2}\right)\)[/tex] is [tex]\(\frac{\pi}{6}\)[/tex].
1. Identify the angle [tex]\( \theta \)[/tex]:
[tex]\[ \theta = \sin^{-1}\left(\frac{1}{2}\right) \][/tex]
This represents the angle whose sine value is [tex]\(\frac{1}{2}\)[/tex].
2. Find the angle [tex]\(\theta\)[/tex]:
We know from basic trigonometry that [tex]\(\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\)[/tex]. Therefore,
[tex]\[ \theta = \frac{\pi}{6} \][/tex]
3. Express the given expression in terms of [tex]\( \theta \)[/tex]:
Substitute [tex]\(\theta = \frac{\pi}{6}\)[/tex] into the given expression:
[tex]\[ \csc \left(\sin^{-1}\left(\frac{1}{2}\right)\right) = \csc\left(\frac{\pi}{6}\right) \][/tex]
4. Recall the definition of cosecant:
The cosecant of an angle is the reciprocal of its sine. Therefore,
[tex]\[ \csc\left(\frac{\pi}{6}\right) = \frac{1}{\sin\left(\frac{\pi}{6}\right)} \][/tex]
5. Substitute the sine value:
We already know that [tex]\(\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\)[/tex]. So,
[tex]\[ \csc\left(\frac{\pi}{6}\right) = \frac{1}{\frac{1}{2}} = 2 \][/tex]
Therefore, the exact value of the expression [tex]\(\csc \left(\sin^{-1}\left(\frac{1}{2}\right)\right)\)[/tex] is [tex]\(2\)[/tex]. The intermediate value of the angle [tex]\(\sin^{-1}\left(\frac{1}{2}\right)\)[/tex] is [tex]\(\frac{\pi}{6}\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.