Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the given system of linear equations step by step:
[tex]\[ \left\{ \begin{array}{c} \frac{2}{3} x - \frac{3}{4} y = \frac{1}{6} \\ \frac{1}{8} x - \frac{5}{6} y = 12 \end{array} \right. \][/tex]
Let's label them as Equation 1 and Equation 2:
Equation 1:
[tex]\[ \frac{2}{3} x - \frac{3}{4} y = \frac{1}{6} \][/tex]
Equation 2:
[tex]\[ \frac{1}{8} x - \frac{5}{6} y = 12 \][/tex]
Step 1: Clear fractions by finding the common denominators.
For Equation 1, the common denominator of 3, 4, and 6 is 12, so we multiply every term by 12:
[tex]\[ 12 \left(\frac{2}{3} x\right) - 12 \left(\frac{3}{4} y\right) = 12 \left(\frac{1}{6}\right) \][/tex]
This simplifies to:
[tex]\[ 8x - 9y = 2 \][/tex]
For Equation 2, the common denominator of 8 and 6 is 24, so we multiply every term by 24:
[tex]\[ 24 \left(\frac{1}{8} x\right) - 24 \left(\frac{5}{6} y\right) = 24 \cdot 12 \][/tex]
This simplifies to:
[tex]\[ 3x - 20y = 288 \][/tex]
Now we have the system:
[tex]\[ \left\{ \begin{array}{c} 8x - 9y = 2 \\ 3x - 20y = 288 \end{array} \right. \][/tex]
Step 2: Use the method of substitution or elimination to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. Here we'll use the elimination method.
First, we manipulate the equations for easier elimination. Multiply Equation 1 by 3 and Equation 2 by 8:
[tex]\[ 3(8x - 9y) = 3 \cdot 2 \][/tex]
[tex]\[ 8(3x - 20y) = 8 \cdot 288 \][/tex]
This gives us:
[tex]\[ 24x - 27y = 6 \][/tex]
[tex]\[ 24x - 160y = 2304 \][/tex]
Now subtract the first modified equation from the second one:
[tex]\[ (24x - 160y) - (24x - 27y) = 2304 - 6 \][/tex]
This reduces to:
[tex]\[ -133y = 2298 \][/tex]
Solving for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{2298}{-133} \approx -17.278 \][/tex]
Step 3: Substitute [tex]\(y\)[/tex] back into one of the original simplified equations to find [tex]\(x\)[/tex]. We use the first simplified equation:
[tex]\[ 8x - 9(-17.278) = 2 \][/tex]
This simplifies to:
[tex]\[ 8x + 155.502 = 2 \][/tex]
Subtract 155.502 from both sides:
[tex]\[ 8x = 2 - 155.502 \][/tex]
[tex]\[ 8x = -153.502 \][/tex]
Dividing by 8:
[tex]\[ x = \frac{-153.502}{8} \approx -19.188 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ x \approx -19.188 \][/tex]
[tex]\[ y \approx -17.278 \][/tex]
[tex]\[ \left\{ \begin{array}{c} \frac{2}{3} x - \frac{3}{4} y = \frac{1}{6} \\ \frac{1}{8} x - \frac{5}{6} y = 12 \end{array} \right. \][/tex]
Let's label them as Equation 1 and Equation 2:
Equation 1:
[tex]\[ \frac{2}{3} x - \frac{3}{4} y = \frac{1}{6} \][/tex]
Equation 2:
[tex]\[ \frac{1}{8} x - \frac{5}{6} y = 12 \][/tex]
Step 1: Clear fractions by finding the common denominators.
For Equation 1, the common denominator of 3, 4, and 6 is 12, so we multiply every term by 12:
[tex]\[ 12 \left(\frac{2}{3} x\right) - 12 \left(\frac{3}{4} y\right) = 12 \left(\frac{1}{6}\right) \][/tex]
This simplifies to:
[tex]\[ 8x - 9y = 2 \][/tex]
For Equation 2, the common denominator of 8 and 6 is 24, so we multiply every term by 24:
[tex]\[ 24 \left(\frac{1}{8} x\right) - 24 \left(\frac{5}{6} y\right) = 24 \cdot 12 \][/tex]
This simplifies to:
[tex]\[ 3x - 20y = 288 \][/tex]
Now we have the system:
[tex]\[ \left\{ \begin{array}{c} 8x - 9y = 2 \\ 3x - 20y = 288 \end{array} \right. \][/tex]
Step 2: Use the method of substitution or elimination to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. Here we'll use the elimination method.
First, we manipulate the equations for easier elimination. Multiply Equation 1 by 3 and Equation 2 by 8:
[tex]\[ 3(8x - 9y) = 3 \cdot 2 \][/tex]
[tex]\[ 8(3x - 20y) = 8 \cdot 288 \][/tex]
This gives us:
[tex]\[ 24x - 27y = 6 \][/tex]
[tex]\[ 24x - 160y = 2304 \][/tex]
Now subtract the first modified equation from the second one:
[tex]\[ (24x - 160y) - (24x - 27y) = 2304 - 6 \][/tex]
This reduces to:
[tex]\[ -133y = 2298 \][/tex]
Solving for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{2298}{-133} \approx -17.278 \][/tex]
Step 3: Substitute [tex]\(y\)[/tex] back into one of the original simplified equations to find [tex]\(x\)[/tex]. We use the first simplified equation:
[tex]\[ 8x - 9(-17.278) = 2 \][/tex]
This simplifies to:
[tex]\[ 8x + 155.502 = 2 \][/tex]
Subtract 155.502 from both sides:
[tex]\[ 8x = 2 - 155.502 \][/tex]
[tex]\[ 8x = -153.502 \][/tex]
Dividing by 8:
[tex]\[ x = \frac{-153.502}{8} \approx -19.188 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ x \approx -19.188 \][/tex]
[tex]\[ y \approx -17.278 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.