Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's solve the given system of linear equations step by step:
[tex]\[ \left\{ \begin{array}{c} \frac{2}{3} x - \frac{3}{4} y = \frac{1}{6} \\ \frac{1}{8} x - \frac{5}{6} y = 12 \end{array} \right. \][/tex]
Let's label them as Equation 1 and Equation 2:
Equation 1:
[tex]\[ \frac{2}{3} x - \frac{3}{4} y = \frac{1}{6} \][/tex]
Equation 2:
[tex]\[ \frac{1}{8} x - \frac{5}{6} y = 12 \][/tex]
Step 1: Clear fractions by finding the common denominators.
For Equation 1, the common denominator of 3, 4, and 6 is 12, so we multiply every term by 12:
[tex]\[ 12 \left(\frac{2}{3} x\right) - 12 \left(\frac{3}{4} y\right) = 12 \left(\frac{1}{6}\right) \][/tex]
This simplifies to:
[tex]\[ 8x - 9y = 2 \][/tex]
For Equation 2, the common denominator of 8 and 6 is 24, so we multiply every term by 24:
[tex]\[ 24 \left(\frac{1}{8} x\right) - 24 \left(\frac{5}{6} y\right) = 24 \cdot 12 \][/tex]
This simplifies to:
[tex]\[ 3x - 20y = 288 \][/tex]
Now we have the system:
[tex]\[ \left\{ \begin{array}{c} 8x - 9y = 2 \\ 3x - 20y = 288 \end{array} \right. \][/tex]
Step 2: Use the method of substitution or elimination to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. Here we'll use the elimination method.
First, we manipulate the equations for easier elimination. Multiply Equation 1 by 3 and Equation 2 by 8:
[tex]\[ 3(8x - 9y) = 3 \cdot 2 \][/tex]
[tex]\[ 8(3x - 20y) = 8 \cdot 288 \][/tex]
This gives us:
[tex]\[ 24x - 27y = 6 \][/tex]
[tex]\[ 24x - 160y = 2304 \][/tex]
Now subtract the first modified equation from the second one:
[tex]\[ (24x - 160y) - (24x - 27y) = 2304 - 6 \][/tex]
This reduces to:
[tex]\[ -133y = 2298 \][/tex]
Solving for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{2298}{-133} \approx -17.278 \][/tex]
Step 3: Substitute [tex]\(y\)[/tex] back into one of the original simplified equations to find [tex]\(x\)[/tex]. We use the first simplified equation:
[tex]\[ 8x - 9(-17.278) = 2 \][/tex]
This simplifies to:
[tex]\[ 8x + 155.502 = 2 \][/tex]
Subtract 155.502 from both sides:
[tex]\[ 8x = 2 - 155.502 \][/tex]
[tex]\[ 8x = -153.502 \][/tex]
Dividing by 8:
[tex]\[ x = \frac{-153.502}{8} \approx -19.188 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ x \approx -19.188 \][/tex]
[tex]\[ y \approx -17.278 \][/tex]
[tex]\[ \left\{ \begin{array}{c} \frac{2}{3} x - \frac{3}{4} y = \frac{1}{6} \\ \frac{1}{8} x - \frac{5}{6} y = 12 \end{array} \right. \][/tex]
Let's label them as Equation 1 and Equation 2:
Equation 1:
[tex]\[ \frac{2}{3} x - \frac{3}{4} y = \frac{1}{6} \][/tex]
Equation 2:
[tex]\[ \frac{1}{8} x - \frac{5}{6} y = 12 \][/tex]
Step 1: Clear fractions by finding the common denominators.
For Equation 1, the common denominator of 3, 4, and 6 is 12, so we multiply every term by 12:
[tex]\[ 12 \left(\frac{2}{3} x\right) - 12 \left(\frac{3}{4} y\right) = 12 \left(\frac{1}{6}\right) \][/tex]
This simplifies to:
[tex]\[ 8x - 9y = 2 \][/tex]
For Equation 2, the common denominator of 8 and 6 is 24, so we multiply every term by 24:
[tex]\[ 24 \left(\frac{1}{8} x\right) - 24 \left(\frac{5}{6} y\right) = 24 \cdot 12 \][/tex]
This simplifies to:
[tex]\[ 3x - 20y = 288 \][/tex]
Now we have the system:
[tex]\[ \left\{ \begin{array}{c} 8x - 9y = 2 \\ 3x - 20y = 288 \end{array} \right. \][/tex]
Step 2: Use the method of substitution or elimination to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. Here we'll use the elimination method.
First, we manipulate the equations for easier elimination. Multiply Equation 1 by 3 and Equation 2 by 8:
[tex]\[ 3(8x - 9y) = 3 \cdot 2 \][/tex]
[tex]\[ 8(3x - 20y) = 8 \cdot 288 \][/tex]
This gives us:
[tex]\[ 24x - 27y = 6 \][/tex]
[tex]\[ 24x - 160y = 2304 \][/tex]
Now subtract the first modified equation from the second one:
[tex]\[ (24x - 160y) - (24x - 27y) = 2304 - 6 \][/tex]
This reduces to:
[tex]\[ -133y = 2298 \][/tex]
Solving for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{2298}{-133} \approx -17.278 \][/tex]
Step 3: Substitute [tex]\(y\)[/tex] back into one of the original simplified equations to find [tex]\(x\)[/tex]. We use the first simplified equation:
[tex]\[ 8x - 9(-17.278) = 2 \][/tex]
This simplifies to:
[tex]\[ 8x + 155.502 = 2 \][/tex]
Subtract 155.502 from both sides:
[tex]\[ 8x = 2 - 155.502 \][/tex]
[tex]\[ 8x = -153.502 \][/tex]
Dividing by 8:
[tex]\[ x = \frac{-153.502}{8} \approx -19.188 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ x \approx -19.188 \][/tex]
[tex]\[ y \approx -17.278 \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.