At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the volume of hydrogen gas ([tex]\(H_2\)[/tex]) needed to produce 446 liters of ammonia ([tex]\(NH_3\)[/tex]) at STP according to the chemical equation:
[tex]\[ N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \][/tex]
follow these steps:
1. Understand the balanced chemical equation: This tells us the stoichiometric relationship between the reactants and products. Specifically, 1 mole (or volume) of nitrogen gas ([tex]\(N_2\)[/tex]) reacts with 3 moles (or volumes) of hydrogen gas ([tex]\(H_2\)[/tex]) to produce 2 moles (or volumes) of ammonia ([tex]\(NH_3\)[/tex]).
2. Identify the ratio: From the balanced equation, 3 volumes of [tex]\(H_2\)[/tex] produce 2 volumes of [tex]\(NH_3\)[/tex]. This can be expressed as:
[tex]\[ \frac{3 \text{ volumes } H_2}{2 \text{ volumes } NH_3} \][/tex]
3. Given data: You are given that 446 liters of [tex]\(NH_3\)[/tex] are produced.
4. Set up the proportion: To find the volume of [tex]\(H_2\)[/tex] needed, use the stoichiometric ratio:
[tex]\[ \text{Volume of } H_2 = \left( \frac{3 \text{ volumes } H_2}{2 \text{ volumes } NH_3} \right) \times \text{volume of } NH_3 \][/tex]
5. Plug in the known value: Replace the volume of [tex]\(NH_3\)[/tex] with 446 liters:
[tex]\[ \text{Volume of } H_2 = \left( \frac{3}{2} \right) \times 446 \text{ liters} \][/tex]
6. Calculate the result:
[tex]\[ \text{Volume of } H_2 = \frac{3}{2} \times 446 \][/tex]
[tex]\[ \text{Volume of } H_2 = 1.5 \times 446 \][/tex]
[tex]\[ \text{Volume of } H_2 = 669 \text{ liters} \][/tex]
Therefore, the volume of hydrogen gas needed to produce 446 liters of ammonia at STP is 669 liters.
[tex]\[ N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \][/tex]
follow these steps:
1. Understand the balanced chemical equation: This tells us the stoichiometric relationship between the reactants and products. Specifically, 1 mole (or volume) of nitrogen gas ([tex]\(N_2\)[/tex]) reacts with 3 moles (or volumes) of hydrogen gas ([tex]\(H_2\)[/tex]) to produce 2 moles (or volumes) of ammonia ([tex]\(NH_3\)[/tex]).
2. Identify the ratio: From the balanced equation, 3 volumes of [tex]\(H_2\)[/tex] produce 2 volumes of [tex]\(NH_3\)[/tex]. This can be expressed as:
[tex]\[ \frac{3 \text{ volumes } H_2}{2 \text{ volumes } NH_3} \][/tex]
3. Given data: You are given that 446 liters of [tex]\(NH_3\)[/tex] are produced.
4. Set up the proportion: To find the volume of [tex]\(H_2\)[/tex] needed, use the stoichiometric ratio:
[tex]\[ \text{Volume of } H_2 = \left( \frac{3 \text{ volumes } H_2}{2 \text{ volumes } NH_3} \right) \times \text{volume of } NH_3 \][/tex]
5. Plug in the known value: Replace the volume of [tex]\(NH_3\)[/tex] with 446 liters:
[tex]\[ \text{Volume of } H_2 = \left( \frac{3}{2} \right) \times 446 \text{ liters} \][/tex]
6. Calculate the result:
[tex]\[ \text{Volume of } H_2 = \frac{3}{2} \times 446 \][/tex]
[tex]\[ \text{Volume of } H_2 = 1.5 \times 446 \][/tex]
[tex]\[ \text{Volume of } H_2 = 669 \text{ liters} \][/tex]
Therefore, the volume of hydrogen gas needed to produce 446 liters of ammonia at STP is 669 liters.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.