Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the amplitude, period, and phase shift of the trigonometric equation:
[tex]\[ y = 8 - \frac{1}{2} \sin \left(\pi x + \frac{\pi}{4}\right) \][/tex]
we proceed as follows:
1. Amplitude:
The amplitude of a sine function [tex]\( y = A \sin(Bx + C) + D \)[/tex] is given by [tex]\(|A|\)[/tex]. In this equation, the coefficient of the sine function (without the negative sign and divided by the constant) is [tex]\(-\frac{1}{2}\)[/tex].
Thus, the amplitude is:
[tex]\[ \text{Amplitude} = \left| -\frac{1}{2} \right| = \frac{1}{2} = 0.5 \][/tex]
2. Period:
The period of the sine function [tex]\( y = A \sin(Bx + C) + D \)[/tex] is given by [tex]\( \frac{2\pi}{|B|} \)[/tex].
Here, the coefficient [tex]\( B \)[/tex] of [tex]\( x \)[/tex] inside the sine function is [tex]\(\pi\)[/tex].
Thus, the period is:
[tex]\[ \text{Period} = \frac{2\pi}{\pi} = 2 \][/tex]
3. Phase Shift:
The phase shift of the sine function [tex]\( y = A \sin(Bx + C) + D \)[/tex] is determined by the formula [tex]\( -\frac{C}{B} \)[/tex].
Here, [tex]\( C \)[/tex] is [tex]\(\frac{\pi}{4}\)[/tex] and [tex]\( B \)[/tex] is [tex]\(\pi\)[/tex].
Thus, the phase shift is:
[tex]\[ \text{Phase Shift} = -\frac{\frac{\pi}{4}}{\pi} = -\frac{1}{4} = -0.25 \][/tex]
Since the phase shift is negative, it means the graph of the sine function is shifted to the right by 0.25 units.
So, we summarize our answers:
- Amplitude: [tex]\( 0.5 \)[/tex]
- Phase Shift: shifted to the right
[tex]\[ y = 8 - \frac{1}{2} \sin \left(\pi x + \frac{\pi}{4}\right) \][/tex]
we proceed as follows:
1. Amplitude:
The amplitude of a sine function [tex]\( y = A \sin(Bx + C) + D \)[/tex] is given by [tex]\(|A|\)[/tex]. In this equation, the coefficient of the sine function (without the negative sign and divided by the constant) is [tex]\(-\frac{1}{2}\)[/tex].
Thus, the amplitude is:
[tex]\[ \text{Amplitude} = \left| -\frac{1}{2} \right| = \frac{1}{2} = 0.5 \][/tex]
2. Period:
The period of the sine function [tex]\( y = A \sin(Bx + C) + D \)[/tex] is given by [tex]\( \frac{2\pi}{|B|} \)[/tex].
Here, the coefficient [tex]\( B \)[/tex] of [tex]\( x \)[/tex] inside the sine function is [tex]\(\pi\)[/tex].
Thus, the period is:
[tex]\[ \text{Period} = \frac{2\pi}{\pi} = 2 \][/tex]
3. Phase Shift:
The phase shift of the sine function [tex]\( y = A \sin(Bx + C) + D \)[/tex] is determined by the formula [tex]\( -\frac{C}{B} \)[/tex].
Here, [tex]\( C \)[/tex] is [tex]\(\frac{\pi}{4}\)[/tex] and [tex]\( B \)[/tex] is [tex]\(\pi\)[/tex].
Thus, the phase shift is:
[tex]\[ \text{Phase Shift} = -\frac{\frac{\pi}{4}}{\pi} = -\frac{1}{4} = -0.25 \][/tex]
Since the phase shift is negative, it means the graph of the sine function is shifted to the right by 0.25 units.
So, we summarize our answers:
- Amplitude: [tex]\( 0.5 \)[/tex]
- Phase Shift: shifted to the right
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.