Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine whether [tex]\(-\frac{7}{8}\)[/tex] is a potential rational root of any of the given polynomial functions, we can use the Rational Root Theorem. The Rational Root Theorem states that if [tex]\(\frac{p}{q}\)[/tex] is a root of a polynomial, where [tex]\(p\)[/tex] is a factor of the constant term and [tex]\(q\)[/tex] is a factor of the leading coefficient, then [tex]\(\frac{p}{q}\)[/tex] may be a potential rational root of the polynomial.
Let's check each polynomial one by one:
1. [tex]\(f_1(x) = 24x^7 + 3x^6 + 4x^3 - x - 28\)[/tex]
- Leading coefficient: [tex]\(24\)[/tex]
- Constant term: [tex]\(-28\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-28\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 14, \pm 28\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(24\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{4}, \pm \frac{1}{6}, \pm \frac{1}{8}, \pm \frac{7}{8}\)[/tex], etc.
Given that [tex]\(-\frac{7}{8}\)[/tex] is one of the potential rational roots evaluated, we can conclude that [tex]\(-\frac{7}{8}\)[/tex] is a potential root of the polynomial [tex]\(f_1(x)\)[/tex].
2. [tex]\(f_2(x) = 28x^7 + 3x^6 + 4x^3 - x - 24\)[/tex]
- Leading coefficient: [tex]\(28\)[/tex]
- Constant term: [tex]\(-24\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-24\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(28\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 14, \pm 28\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{7},\)[/tex], etc.
Upon checking, [tex]\(-\frac{7}{8}\)[/tex] is not a possible rational root based on the factors of the constant term and leading coefficient.
3. [tex]\(f_3(x) = 30x^7 + 3x^6 + 4x^3 - x - 56\)[/tex]
- Leading coefficient: [tex]\(30\)[/tex]
- Constant term: [tex]\(-56\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-56\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 8, \pm 14, \pm 28, \pm 56\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(30\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{5},\)[/tex], etc.
Checking, [tex]\(-\frac{7}{8}\)[/tex] is not a potential rational root based on the factors.
4. [tex]\(f_4(x) = 56x^7 + 3x^6 + 4x^3 - x - 30\)[/tex]
- Leading coefficient: [tex]\(56\)[/tex]
- Constant term: [tex]\(-30\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-30\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(56\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 8, \pm 14, \pm 28, \pm 56\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{7},\)[/tex], etc.
Upon checking again, [tex]\(-\frac{7}{8}\)[/tex] does not appear as a potential rational root based on the factors of the constant term and leading coefficient.
Thus, [tex]\(-\frac{7}{8}\)[/tex] is a potential rational root of the polynomial [tex]\(f_1(x) = 24x^7 + 3x^6 + 4x^3 - x - 28\)[/tex].
Let's check each polynomial one by one:
1. [tex]\(f_1(x) = 24x^7 + 3x^6 + 4x^3 - x - 28\)[/tex]
- Leading coefficient: [tex]\(24\)[/tex]
- Constant term: [tex]\(-28\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-28\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 14, \pm 28\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(24\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{4}, \pm \frac{1}{6}, \pm \frac{1}{8}, \pm \frac{7}{8}\)[/tex], etc.
Given that [tex]\(-\frac{7}{8}\)[/tex] is one of the potential rational roots evaluated, we can conclude that [tex]\(-\frac{7}{8}\)[/tex] is a potential root of the polynomial [tex]\(f_1(x)\)[/tex].
2. [tex]\(f_2(x) = 28x^7 + 3x^6 + 4x^3 - x - 24\)[/tex]
- Leading coefficient: [tex]\(28\)[/tex]
- Constant term: [tex]\(-24\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-24\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(28\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 14, \pm 28\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{7},\)[/tex], etc.
Upon checking, [tex]\(-\frac{7}{8}\)[/tex] is not a possible rational root based on the factors of the constant term and leading coefficient.
3. [tex]\(f_3(x) = 30x^7 + 3x^6 + 4x^3 - x - 56\)[/tex]
- Leading coefficient: [tex]\(30\)[/tex]
- Constant term: [tex]\(-56\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-56\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 8, \pm 14, \pm 28, \pm 56\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(30\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{5},\)[/tex], etc.
Checking, [tex]\(-\frac{7}{8}\)[/tex] is not a potential rational root based on the factors.
4. [tex]\(f_4(x) = 56x^7 + 3x^6 + 4x^3 - x - 30\)[/tex]
- Leading coefficient: [tex]\(56\)[/tex]
- Constant term: [tex]\(-30\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-30\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(56\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 8, \pm 14, \pm 28, \pm 56\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{7},\)[/tex], etc.
Upon checking again, [tex]\(-\frac{7}{8}\)[/tex] does not appear as a potential rational root based on the factors of the constant term and leading coefficient.
Thus, [tex]\(-\frac{7}{8}\)[/tex] is a potential rational root of the polynomial [tex]\(f_1(x) = 24x^7 + 3x^6 + 4x^3 - x - 28\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.