Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine whether [tex]\(-\frac{7}{8}\)[/tex] is a potential rational root of any of the given polynomial functions, we can use the Rational Root Theorem. The Rational Root Theorem states that if [tex]\(\frac{p}{q}\)[/tex] is a root of a polynomial, where [tex]\(p\)[/tex] is a factor of the constant term and [tex]\(q\)[/tex] is a factor of the leading coefficient, then [tex]\(\frac{p}{q}\)[/tex] may be a potential rational root of the polynomial.
Let's check each polynomial one by one:
1. [tex]\(f_1(x) = 24x^7 + 3x^6 + 4x^3 - x - 28\)[/tex]
- Leading coefficient: [tex]\(24\)[/tex]
- Constant term: [tex]\(-28\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-28\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 14, \pm 28\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(24\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{4}, \pm \frac{1}{6}, \pm \frac{1}{8}, \pm \frac{7}{8}\)[/tex], etc.
Given that [tex]\(-\frac{7}{8}\)[/tex] is one of the potential rational roots evaluated, we can conclude that [tex]\(-\frac{7}{8}\)[/tex] is a potential root of the polynomial [tex]\(f_1(x)\)[/tex].
2. [tex]\(f_2(x) = 28x^7 + 3x^6 + 4x^3 - x - 24\)[/tex]
- Leading coefficient: [tex]\(28\)[/tex]
- Constant term: [tex]\(-24\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-24\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(28\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 14, \pm 28\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{7},\)[/tex], etc.
Upon checking, [tex]\(-\frac{7}{8}\)[/tex] is not a possible rational root based on the factors of the constant term and leading coefficient.
3. [tex]\(f_3(x) = 30x^7 + 3x^6 + 4x^3 - x - 56\)[/tex]
- Leading coefficient: [tex]\(30\)[/tex]
- Constant term: [tex]\(-56\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-56\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 8, \pm 14, \pm 28, \pm 56\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(30\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{5},\)[/tex], etc.
Checking, [tex]\(-\frac{7}{8}\)[/tex] is not a potential rational root based on the factors.
4. [tex]\(f_4(x) = 56x^7 + 3x^6 + 4x^3 - x - 30\)[/tex]
- Leading coefficient: [tex]\(56\)[/tex]
- Constant term: [tex]\(-30\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-30\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(56\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 8, \pm 14, \pm 28, \pm 56\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{7},\)[/tex], etc.
Upon checking again, [tex]\(-\frac{7}{8}\)[/tex] does not appear as a potential rational root based on the factors of the constant term and leading coefficient.
Thus, [tex]\(-\frac{7}{8}\)[/tex] is a potential rational root of the polynomial [tex]\(f_1(x) = 24x^7 + 3x^6 + 4x^3 - x - 28\)[/tex].
Let's check each polynomial one by one:
1. [tex]\(f_1(x) = 24x^7 + 3x^6 + 4x^3 - x - 28\)[/tex]
- Leading coefficient: [tex]\(24\)[/tex]
- Constant term: [tex]\(-28\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-28\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 14, \pm 28\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(24\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{4}, \pm \frac{1}{6}, \pm \frac{1}{8}, \pm \frac{7}{8}\)[/tex], etc.
Given that [tex]\(-\frac{7}{8}\)[/tex] is one of the potential rational roots evaluated, we can conclude that [tex]\(-\frac{7}{8}\)[/tex] is a potential root of the polynomial [tex]\(f_1(x)\)[/tex].
2. [tex]\(f_2(x) = 28x^7 + 3x^6 + 4x^3 - x - 24\)[/tex]
- Leading coefficient: [tex]\(28\)[/tex]
- Constant term: [tex]\(-24\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-24\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(28\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 14, \pm 28\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{7},\)[/tex], etc.
Upon checking, [tex]\(-\frac{7}{8}\)[/tex] is not a possible rational root based on the factors of the constant term and leading coefficient.
3. [tex]\(f_3(x) = 30x^7 + 3x^6 + 4x^3 - x - 56\)[/tex]
- Leading coefficient: [tex]\(30\)[/tex]
- Constant term: [tex]\(-56\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-56\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 8, \pm 14, \pm 28, \pm 56\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(30\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{5},\)[/tex], etc.
Checking, [tex]\(-\frac{7}{8}\)[/tex] is not a potential rational root based on the factors.
4. [tex]\(f_4(x) = 56x^7 + 3x^6 + 4x^3 - x - 30\)[/tex]
- Leading coefficient: [tex]\(56\)[/tex]
- Constant term: [tex]\(-30\)[/tex]
- The possible values for [tex]\(p\)[/tex] (factors of [tex]\(-30\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30\)[/tex].
- The possible values for [tex]\(q\)[/tex] (factors of [tex]\(56\)[/tex]) are [tex]\(\pm 1, \pm 2, \pm 4, \pm 7, \pm 8, \pm 14, \pm 28, \pm 56\)[/tex].
- Therefore, the possible rational roots [tex]\(\frac{p}{q}\)[/tex] include values like [tex]\(\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{7},\)[/tex], etc.
Upon checking again, [tex]\(-\frac{7}{8}\)[/tex] does not appear as a potential rational root based on the factors of the constant term and leading coefficient.
Thus, [tex]\(-\frac{7}{8}\)[/tex] is a potential rational root of the polynomial [tex]\(f_1(x) = 24x^7 + 3x^6 + 4x^3 - x - 28\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.