Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve for [tex]\( \sqrt{3a - 8b} \)[/tex] given the expressions:
[tex]\[ \begin{aligned} \text{M(x; y)} &= -8 x^{a-b} \cdot y^{a+2b}, \\ \text{N(x; y)} &= 21 x^7 \cdot y^{18-a}, \end{aligned} \][/tex]
we need to determine the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex]. For the terms to be similar, the powers of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in both expressions must be equal. Therefore, we can set up the following system of equations based on the exponents:
1. From the exponents of [tex]\(x\)[/tex]:
[tex]\[ a - b = 7 \][/tex]
2. From the exponents of [tex]\(y\)[/tex]:
[tex]\[ a + 2b = 18 - a \][/tex]
First, rewrite the second equation to make it easier to solve:
[tex]\[ a + 2b + a = 18 \][/tex]
[tex]\[ 2a + 2b = 18 \][/tex]
[tex]\[ a + b = 9 \][/tex]
We now have the system of linear equations:
[tex]\[ \begin{cases} a - b = 7 \\ a + b = 9 \end{cases} \][/tex]
We can solve this system using substitution or elimination. Here, we will use the elimination method. Add the two equations to eliminate [tex]\(b\)[/tex]:
[tex]\[ (a - b) + (a + b) = 7 + 9 \][/tex]
[tex]\[ 2a = 16 \][/tex]
[tex]\[ a = 8 \][/tex]
Now substitute [tex]\(a = 8\)[/tex] into one of the original equations to find [tex]\(b\)[/tex]. We'll use [tex]\(a + b = 9\)[/tex]:
[tex]\[ 8 + b = 9 \][/tex]
[tex]\[ b = 1 \][/tex]
So, the values are [tex]\(a = 8\)[/tex] and [tex]\(b = 1\)[/tex].
Next, we need to calculate [tex]\( \sqrt{3a - 8b} \)[/tex]:
[tex]\[ \sqrt{3a - 8b} = \sqrt{3(8) - 8(1)} = \sqrt{24 - 8} = \sqrt{16} = 4 \][/tex]
Thus, the final value is:
[tex]\[ \boxed{4} \][/tex]
[tex]\[ \begin{aligned} \text{M(x; y)} &= -8 x^{a-b} \cdot y^{a+2b}, \\ \text{N(x; y)} &= 21 x^7 \cdot y^{18-a}, \end{aligned} \][/tex]
we need to determine the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex]. For the terms to be similar, the powers of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in both expressions must be equal. Therefore, we can set up the following system of equations based on the exponents:
1. From the exponents of [tex]\(x\)[/tex]:
[tex]\[ a - b = 7 \][/tex]
2. From the exponents of [tex]\(y\)[/tex]:
[tex]\[ a + 2b = 18 - a \][/tex]
First, rewrite the second equation to make it easier to solve:
[tex]\[ a + 2b + a = 18 \][/tex]
[tex]\[ 2a + 2b = 18 \][/tex]
[tex]\[ a + b = 9 \][/tex]
We now have the system of linear equations:
[tex]\[ \begin{cases} a - b = 7 \\ a + b = 9 \end{cases} \][/tex]
We can solve this system using substitution or elimination. Here, we will use the elimination method. Add the two equations to eliminate [tex]\(b\)[/tex]:
[tex]\[ (a - b) + (a + b) = 7 + 9 \][/tex]
[tex]\[ 2a = 16 \][/tex]
[tex]\[ a = 8 \][/tex]
Now substitute [tex]\(a = 8\)[/tex] into one of the original equations to find [tex]\(b\)[/tex]. We'll use [tex]\(a + b = 9\)[/tex]:
[tex]\[ 8 + b = 9 \][/tex]
[tex]\[ b = 1 \][/tex]
So, the values are [tex]\(a = 8\)[/tex] and [tex]\(b = 1\)[/tex].
Next, we need to calculate [tex]\( \sqrt{3a - 8b} \)[/tex]:
[tex]\[ \sqrt{3a - 8b} = \sqrt{3(8) - 8(1)} = \sqrt{24 - 8} = \sqrt{16} = 4 \][/tex]
Thus, the final value is:
[tex]\[ \boxed{4} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.