Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the rational roots of the polynomial [tex]\( f(x) = 20x^4 + x^3 + 8x^2 + x - 12 \)[/tex], we use the Rational Root Theorem. This theorem states that any rational root of the polynomial, when written in its simplest form [tex]\( \frac{p}{q} \)[/tex], must have [tex]\( p \)[/tex] as a factor of the constant term and [tex]\( q \)[/tex] as a factor of the leading coefficient.
1. Identify the constant term and the leading coefficient:
- The constant term is [tex]\(-12\)[/tex].
- The leading coefficient is [tex]\(20\)[/tex].
2. Find the factors of the constant term and the leading coefficient:
- Factors of [tex]\(-12\)[/tex] are [tex]\(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\)[/tex].
- Factors of [tex]\(20\)[/tex] are [tex]\(\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20\)[/tex].
3. List all possible rational roots:
- By combining the factors of the constant term with the factors of the leading coefficient, the potential rational roots are:
[tex]\[ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{5}, \pm \frac{1}{10}, \pm \frac{1}{20}, \pm 2, \pm \frac{2}{2}, \pm \frac{2}{4}, \pm \frac{2}{5}, \pm \frac{2}{10}, \pm \frac{2}{20}, \pm 3, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm \frac{3}{5}, \pm \frac{3}{10}, \pm \frac{3}{20}, \pm 4, \pm \frac{4}{2}, \pm \frac{4}{4}, \pm \frac{4}{5}, \pm \frac{4}{10}, \pm \frac{4}{20}, \pm 6, \pm \frac{6}{2}, \pm \frac{6}{4}, \pm \frac{6}{5}, \pm \frac{6}{10}, \pm \frac{6}{20}, \pm 12, \pm \frac{12}{2}, \pm \frac{12}{4}, \pm \frac{12}{5}, \pm \frac{12}{10}, \pm \frac{12}{20}. \][/tex]
4. Verify the rational roots from the simplified list:
After testing all candidates, the valid rational roots are [tex]\(\frac{3}{4}\)[/tex] and [tex]\(-\frac{4}{5}\)[/tex]. Hence, we list all these validated roots:
The correct answer is:
[tex]\[ -\frac{4}{5} \text{ and } \frac{3}{4} \][/tex]
1. Identify the constant term and the leading coefficient:
- The constant term is [tex]\(-12\)[/tex].
- The leading coefficient is [tex]\(20\)[/tex].
2. Find the factors of the constant term and the leading coefficient:
- Factors of [tex]\(-12\)[/tex] are [tex]\(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\)[/tex].
- Factors of [tex]\(20\)[/tex] are [tex]\(\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20\)[/tex].
3. List all possible rational roots:
- By combining the factors of the constant term with the factors of the leading coefficient, the potential rational roots are:
[tex]\[ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{5}, \pm \frac{1}{10}, \pm \frac{1}{20}, \pm 2, \pm \frac{2}{2}, \pm \frac{2}{4}, \pm \frac{2}{5}, \pm \frac{2}{10}, \pm \frac{2}{20}, \pm 3, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm \frac{3}{5}, \pm \frac{3}{10}, \pm \frac{3}{20}, \pm 4, \pm \frac{4}{2}, \pm \frac{4}{4}, \pm \frac{4}{5}, \pm \frac{4}{10}, \pm \frac{4}{20}, \pm 6, \pm \frac{6}{2}, \pm \frac{6}{4}, \pm \frac{6}{5}, \pm \frac{6}{10}, \pm \frac{6}{20}, \pm 12, \pm \frac{12}{2}, \pm \frac{12}{4}, \pm \frac{12}{5}, \pm \frac{12}{10}, \pm \frac{12}{20}. \][/tex]
4. Verify the rational roots from the simplified list:
After testing all candidates, the valid rational roots are [tex]\(\frac{3}{4}\)[/tex] and [tex]\(-\frac{4}{5}\)[/tex]. Hence, we list all these validated roots:
The correct answer is:
[tex]\[ -\frac{4}{5} \text{ and } \frac{3}{4} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.