Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

What are all the rational roots of the polynomial [tex]\( f(x) = 20x^4 + x^3 + 8x^2 + x - 12 \)[/tex]?

A. [tex]\(-\frac{4}{5}\)[/tex] and [tex]\(\frac{3}{4}\)[/tex]
B. [tex]\(-\frac{4}{5}\)[/tex] and [tex]\(-\frac{3}{4}\)[/tex]
C. [tex]\(-1, -\frac{4}{5}, \frac{3}{4}\)[/tex], and [tex]\(1\)[/tex]
D. [tex]\(-1, -\frac{4}{5}, -\frac{3}{4}\)[/tex], and [tex]\(1\)[/tex]


Sagot :

To determine the rational roots of the polynomial [tex]\( f(x) = 20x^4 + x^3 + 8x^2 + x - 12 \)[/tex], we use the Rational Root Theorem. This theorem states that any rational root of the polynomial, when written in its simplest form [tex]\( \frac{p}{q} \)[/tex], must have [tex]\( p \)[/tex] as a factor of the constant term and [tex]\( q \)[/tex] as a factor of the leading coefficient.

1. Identify the constant term and the leading coefficient:
- The constant term is [tex]\(-12\)[/tex].
- The leading coefficient is [tex]\(20\)[/tex].

2. Find the factors of the constant term and the leading coefficient:
- Factors of [tex]\(-12\)[/tex] are [tex]\(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\)[/tex].
- Factors of [tex]\(20\)[/tex] are [tex]\(\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20\)[/tex].

3. List all possible rational roots:
- By combining the factors of the constant term with the factors of the leading coefficient, the potential rational roots are:
[tex]\[ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{5}, \pm \frac{1}{10}, \pm \frac{1}{20}, \pm 2, \pm \frac{2}{2}, \pm \frac{2}{4}, \pm \frac{2}{5}, \pm \frac{2}{10}, \pm \frac{2}{20}, \pm 3, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm \frac{3}{5}, \pm \frac{3}{10}, \pm \frac{3}{20}, \pm 4, \pm \frac{4}{2}, \pm \frac{4}{4}, \pm \frac{4}{5}, \pm \frac{4}{10}, \pm \frac{4}{20}, \pm 6, \pm \frac{6}{2}, \pm \frac{6}{4}, \pm \frac{6}{5}, \pm \frac{6}{10}, \pm \frac{6}{20}, \pm 12, \pm \frac{12}{2}, \pm \frac{12}{4}, \pm \frac{12}{5}, \pm \frac{12}{10}, \pm \frac{12}{20}. \][/tex]

4. Verify the rational roots from the simplified list:
After testing all candidates, the valid rational roots are [tex]\(\frac{3}{4}\)[/tex] and [tex]\(-\frac{4}{5}\)[/tex]. Hence, we list all these validated roots:

The correct answer is:
[tex]\[ -\frac{4}{5} \text{ and } \frac{3}{4} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.