Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the amplitude, period, and phase shift of the given trigonometric equation [tex]\( y = \frac{-1}{3} \sin (x-2) \)[/tex], let's analyze each component one by one.
### Amplitude:
The amplitude of a sine function [tex]\( y = A \sin(Bx + C) \)[/tex] is given by the absolute value of the coefficient [tex]\( A \)[/tex]. In this equation, we have:
[tex]\[ A = \frac{-1}{3} \][/tex]
Thus, the amplitude is:
[tex]\[ \text{Amplitude} = \left| \frac{-1}{3} \right| = \frac{1}{3} \approx 0.3333 \][/tex]
### Period:
The general form for the period of a sine function [tex]\( y = A \sin(Bx + C) \)[/tex] is [tex]\( \frac{2\pi}{|B|} \)[/tex]. In this equation, the coefficient of [tex]\( x \)[/tex] is 1, so:
[tex]\[ B = 1 \][/tex]
Thus, the period is:
[tex]\[ \text{Period} = \frac{2\pi}{1} = 2\pi \approx 6.2832 \][/tex]
### Phase Shift:
The phase shift is determined by the horizontal shift of the sine function, which is given by [tex]\( \frac{-C}{B} \)[/tex] where [tex]\( y = A \sin(Bx + C) \)[/tex]. In this equation:
[tex]\[ B = 1 \][/tex]
[tex]\[ C = -2 \][/tex] (since [tex]\( x - 2 \)[/tex] can be written as [tex]\( x + (-2) \)[/tex])
Thus, the phase shift is:
[tex]\[ \text{Phase Shift} = \frac{-(-2)}{1} = 2 \][/tex]
Since the phase shift is positive, the function is shifted to the right.
In summary, we have:
- Amplitude: [tex]\( \frac{1}{3} \)[/tex]
- Period: [tex]\( 2\pi \)[/tex]
- Phase Shift: The function is shifted to the right by 2 units.
### Final Answer:
Amplitude: [tex]\( \frac{1}{3} \)[/tex]
Phase Shift: shifted to the right
### Amplitude:
The amplitude of a sine function [tex]\( y = A \sin(Bx + C) \)[/tex] is given by the absolute value of the coefficient [tex]\( A \)[/tex]. In this equation, we have:
[tex]\[ A = \frac{-1}{3} \][/tex]
Thus, the amplitude is:
[tex]\[ \text{Amplitude} = \left| \frac{-1}{3} \right| = \frac{1}{3} \approx 0.3333 \][/tex]
### Period:
The general form for the period of a sine function [tex]\( y = A \sin(Bx + C) \)[/tex] is [tex]\( \frac{2\pi}{|B|} \)[/tex]. In this equation, the coefficient of [tex]\( x \)[/tex] is 1, so:
[tex]\[ B = 1 \][/tex]
Thus, the period is:
[tex]\[ \text{Period} = \frac{2\pi}{1} = 2\pi \approx 6.2832 \][/tex]
### Phase Shift:
The phase shift is determined by the horizontal shift of the sine function, which is given by [tex]\( \frac{-C}{B} \)[/tex] where [tex]\( y = A \sin(Bx + C) \)[/tex]. In this equation:
[tex]\[ B = 1 \][/tex]
[tex]\[ C = -2 \][/tex] (since [tex]\( x - 2 \)[/tex] can be written as [tex]\( x + (-2) \)[/tex])
Thus, the phase shift is:
[tex]\[ \text{Phase Shift} = \frac{-(-2)}{1} = 2 \][/tex]
Since the phase shift is positive, the function is shifted to the right.
In summary, we have:
- Amplitude: [tex]\( \frac{1}{3} \)[/tex]
- Period: [tex]\( 2\pi \)[/tex]
- Phase Shift: The function is shifted to the right by 2 units.
### Final Answer:
Amplitude: [tex]\( \frac{1}{3} \)[/tex]
Phase Shift: shifted to the right
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.