Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the amplitude, period, and phase shift of the given trigonometric equation [tex]\( y = \frac{-1}{3} \sin (x-2) \)[/tex], let's analyze each component one by one.
### Amplitude:
The amplitude of a sine function [tex]\( y = A \sin(Bx + C) \)[/tex] is given by the absolute value of the coefficient [tex]\( A \)[/tex]. In this equation, we have:
[tex]\[ A = \frac{-1}{3} \][/tex]
Thus, the amplitude is:
[tex]\[ \text{Amplitude} = \left| \frac{-1}{3} \right| = \frac{1}{3} \approx 0.3333 \][/tex]
### Period:
The general form for the period of a sine function [tex]\( y = A \sin(Bx + C) \)[/tex] is [tex]\( \frac{2\pi}{|B|} \)[/tex]. In this equation, the coefficient of [tex]\( x \)[/tex] is 1, so:
[tex]\[ B = 1 \][/tex]
Thus, the period is:
[tex]\[ \text{Period} = \frac{2\pi}{1} = 2\pi \approx 6.2832 \][/tex]
### Phase Shift:
The phase shift is determined by the horizontal shift of the sine function, which is given by [tex]\( \frac{-C}{B} \)[/tex] where [tex]\( y = A \sin(Bx + C) \)[/tex]. In this equation:
[tex]\[ B = 1 \][/tex]
[tex]\[ C = -2 \][/tex] (since [tex]\( x - 2 \)[/tex] can be written as [tex]\( x + (-2) \)[/tex])
Thus, the phase shift is:
[tex]\[ \text{Phase Shift} = \frac{-(-2)}{1} = 2 \][/tex]
Since the phase shift is positive, the function is shifted to the right.
In summary, we have:
- Amplitude: [tex]\( \frac{1}{3} \)[/tex]
- Period: [tex]\( 2\pi \)[/tex]
- Phase Shift: The function is shifted to the right by 2 units.
### Final Answer:
Amplitude: [tex]\( \frac{1}{3} \)[/tex]
Phase Shift: shifted to the right
### Amplitude:
The amplitude of a sine function [tex]\( y = A \sin(Bx + C) \)[/tex] is given by the absolute value of the coefficient [tex]\( A \)[/tex]. In this equation, we have:
[tex]\[ A = \frac{-1}{3} \][/tex]
Thus, the amplitude is:
[tex]\[ \text{Amplitude} = \left| \frac{-1}{3} \right| = \frac{1}{3} \approx 0.3333 \][/tex]
### Period:
The general form for the period of a sine function [tex]\( y = A \sin(Bx + C) \)[/tex] is [tex]\( \frac{2\pi}{|B|} \)[/tex]. In this equation, the coefficient of [tex]\( x \)[/tex] is 1, so:
[tex]\[ B = 1 \][/tex]
Thus, the period is:
[tex]\[ \text{Period} = \frac{2\pi}{1} = 2\pi \approx 6.2832 \][/tex]
### Phase Shift:
The phase shift is determined by the horizontal shift of the sine function, which is given by [tex]\( \frac{-C}{B} \)[/tex] where [tex]\( y = A \sin(Bx + C) \)[/tex]. In this equation:
[tex]\[ B = 1 \][/tex]
[tex]\[ C = -2 \][/tex] (since [tex]\( x - 2 \)[/tex] can be written as [tex]\( x + (-2) \)[/tex])
Thus, the phase shift is:
[tex]\[ \text{Phase Shift} = \frac{-(-2)}{1} = 2 \][/tex]
Since the phase shift is positive, the function is shifted to the right.
In summary, we have:
- Amplitude: [tex]\( \frac{1}{3} \)[/tex]
- Period: [tex]\( 2\pi \)[/tex]
- Phase Shift: The function is shifted to the right by 2 units.
### Final Answer:
Amplitude: [tex]\( \frac{1}{3} \)[/tex]
Phase Shift: shifted to the right
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.