Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the domains that provide a real value for the period [tex]\(T\)[/tex] of a pendulum, let us analyze the given equation carefully:
[tex]\[ T = 2\pi \sqrt{\frac{L}{g}} \][/tex]
where:
- [tex]\(T\)[/tex] is the period of the pendulum
- [tex]\(L\)[/tex] is the length of the string in meters
- [tex]\(g\)[/tex] is the acceleration due to gravity in [tex]\( \text{m/s}^2 \)[/tex]
### Analysis by Case:
1. Case [tex]\( g < 0 \)[/tex]
- When [tex]\( g \)[/tex] is negative, the term [tex]\( \frac{L}{g} \)[/tex] becomes negative.
- The square root of a negative number is not a real number (it becomes an imaginary number).
- Therefore, for [tex]\( g < 0 \)[/tex], the period [tex]\( T \)[/tex] is not a real value.
2. Case [tex]\( g = 0 \)[/tex]
- When [tex]\( g = 0 \)[/tex], the term [tex]\( \frac{L}{g} \)[/tex] involves division by zero, which is undefined in mathematics.
- Hence, for [tex]\( g = 0 \)[/tex], the period [tex]\( T \)[/tex] is undefined.
3. Case [tex]\( g > 0 \)[/tex]
- When [tex]\( g \)[/tex] is positive, the term [tex]\( \frac{L}{g} \)[/tex] is positive.
- The square root of a positive number is real.
- Therefore, for [tex]\( g > 0 \)[/tex], the period [tex]\( T \)[/tex] is a real value.
4. Case [tex]\( g \geq 0 \)[/tex]
- This domain includes both [tex]\( g > 0 \)[/tex] and [tex]\( g = 0 \)[/tex].
- As analyzed, for [tex]\( g = 0 \)[/tex] the period [tex]\( T \)[/tex] is undefined.
- For [tex]\( g > 0 \)[/tex], the period [tex]\( T \)[/tex] is real.
- Thus, the domain [tex]\( g \geq 0 \)[/tex] does not uniformly provide real values (it includes a case where the value is undefined).
### Conclusion:
The only domain that guarantees the period [tex]\( T \)[/tex] of the pendulum to be a real value is:
[tex]\[ g > 0 \][/tex]
Thus, the correct domain which provides a real value for the period is:
[tex]\[ g > 0 \][/tex]
[tex]\[ T = 2\pi \sqrt{\frac{L}{g}} \][/tex]
where:
- [tex]\(T\)[/tex] is the period of the pendulum
- [tex]\(L\)[/tex] is the length of the string in meters
- [tex]\(g\)[/tex] is the acceleration due to gravity in [tex]\( \text{m/s}^2 \)[/tex]
### Analysis by Case:
1. Case [tex]\( g < 0 \)[/tex]
- When [tex]\( g \)[/tex] is negative, the term [tex]\( \frac{L}{g} \)[/tex] becomes negative.
- The square root of a negative number is not a real number (it becomes an imaginary number).
- Therefore, for [tex]\( g < 0 \)[/tex], the period [tex]\( T \)[/tex] is not a real value.
2. Case [tex]\( g = 0 \)[/tex]
- When [tex]\( g = 0 \)[/tex], the term [tex]\( \frac{L}{g} \)[/tex] involves division by zero, which is undefined in mathematics.
- Hence, for [tex]\( g = 0 \)[/tex], the period [tex]\( T \)[/tex] is undefined.
3. Case [tex]\( g > 0 \)[/tex]
- When [tex]\( g \)[/tex] is positive, the term [tex]\( \frac{L}{g} \)[/tex] is positive.
- The square root of a positive number is real.
- Therefore, for [tex]\( g > 0 \)[/tex], the period [tex]\( T \)[/tex] is a real value.
4. Case [tex]\( g \geq 0 \)[/tex]
- This domain includes both [tex]\( g > 0 \)[/tex] and [tex]\( g = 0 \)[/tex].
- As analyzed, for [tex]\( g = 0 \)[/tex] the period [tex]\( T \)[/tex] is undefined.
- For [tex]\( g > 0 \)[/tex], the period [tex]\( T \)[/tex] is real.
- Thus, the domain [tex]\( g \geq 0 \)[/tex] does not uniformly provide real values (it includes a case where the value is undefined).
### Conclusion:
The only domain that guarantees the period [tex]\( T \)[/tex] of the pendulum to be a real value is:
[tex]\[ g > 0 \][/tex]
Thus, the correct domain which provides a real value for the period is:
[tex]\[ g > 0 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.