Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the definite integral [tex]\( b = \int_1^4 x^2 \, dx \)[/tex], we will proceed step-by-step. Here's a detailed solution:
1. Identify the integrand and the limits of integration.
The integrand is [tex]\( x^2 \)[/tex] and the limits of integration are from [tex]\( 1 \)[/tex] to [tex]\( 4 \)[/tex].
2. Find the antiderivative of the integrand.
The antiderivative (or indefinite integral) of [tex]\( x^2 \)[/tex] is found by using the power rule for integration. The power rule states that:
[tex]\[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \][/tex]
for any real number [tex]\( n \neq -1 \)[/tex].
Applying this rule to [tex]\( x^2 \)[/tex]:
[tex]\[ \int x^2 \, dx = \frac{x^{2+1}}{2+1} = \frac{x^3}{3} \][/tex]
3. Evaluate the definite integral using the Fundamental Theorem of Calculus.
The Fundamental Theorem of Calculus states that if [tex]\( F(x) \)[/tex] is an antiderivative of [tex]\( f(x) \)[/tex], then:
[tex]\[ \int_a^b f(x) \, dx = F(b) - F(a) \][/tex]
Here, our [tex]\( F(x) = \frac{x^3}{3} \)[/tex]. We need to evaluate this at the upper and lower limits of integration, [tex]\( x = 4 \)[/tex] and [tex]\( x = 1 \)[/tex], respectively.
[tex]\[ F(4) = \frac{4^3}{3} = \frac{64}{3} \][/tex]
[tex]\[ F(1) = \frac{1^3}{3} = \frac{1}{3} \][/tex]
4. Subtract the value of the antiderivative at the lower limit from the value at the upper limit.
[tex]\[ \int_1^4 x^2 \, dx = F(4) - F(1) = \frac{64}{3} - \frac{1}{3} \][/tex]
5. Simplify the expression.
Combine the fractions:
[tex]\[ \frac{64}{3} - \frac{1}{3} = \frac{64 - 1}{3} = \frac{63}{3} = 21 \][/tex]
Therefore, the value of the definite integral [tex]\( b = \int_1^4 x^2 \, dx \)[/tex] is:
[tex]\[ b = 21 \][/tex]
1. Identify the integrand and the limits of integration.
The integrand is [tex]\( x^2 \)[/tex] and the limits of integration are from [tex]\( 1 \)[/tex] to [tex]\( 4 \)[/tex].
2. Find the antiderivative of the integrand.
The antiderivative (or indefinite integral) of [tex]\( x^2 \)[/tex] is found by using the power rule for integration. The power rule states that:
[tex]\[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \][/tex]
for any real number [tex]\( n \neq -1 \)[/tex].
Applying this rule to [tex]\( x^2 \)[/tex]:
[tex]\[ \int x^2 \, dx = \frac{x^{2+1}}{2+1} = \frac{x^3}{3} \][/tex]
3. Evaluate the definite integral using the Fundamental Theorem of Calculus.
The Fundamental Theorem of Calculus states that if [tex]\( F(x) \)[/tex] is an antiderivative of [tex]\( f(x) \)[/tex], then:
[tex]\[ \int_a^b f(x) \, dx = F(b) - F(a) \][/tex]
Here, our [tex]\( F(x) = \frac{x^3}{3} \)[/tex]. We need to evaluate this at the upper and lower limits of integration, [tex]\( x = 4 \)[/tex] and [tex]\( x = 1 \)[/tex], respectively.
[tex]\[ F(4) = \frac{4^3}{3} = \frac{64}{3} \][/tex]
[tex]\[ F(1) = \frac{1^3}{3} = \frac{1}{3} \][/tex]
4. Subtract the value of the antiderivative at the lower limit from the value at the upper limit.
[tex]\[ \int_1^4 x^2 \, dx = F(4) - F(1) = \frac{64}{3} - \frac{1}{3} \][/tex]
5. Simplify the expression.
Combine the fractions:
[tex]\[ \frac{64}{3} - \frac{1}{3} = \frac{64 - 1}{3} = \frac{63}{3} = 21 \][/tex]
Therefore, the value of the definite integral [tex]\( b = \int_1^4 x^2 \, dx \)[/tex] is:
[tex]\[ b = 21 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.