Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the definite integral [tex]\( b = \int_1^4 x^2 \, dx \)[/tex], we will proceed step-by-step. Here's a detailed solution:
1. Identify the integrand and the limits of integration.
The integrand is [tex]\( x^2 \)[/tex] and the limits of integration are from [tex]\( 1 \)[/tex] to [tex]\( 4 \)[/tex].
2. Find the antiderivative of the integrand.
The antiderivative (or indefinite integral) of [tex]\( x^2 \)[/tex] is found by using the power rule for integration. The power rule states that:
[tex]\[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \][/tex]
for any real number [tex]\( n \neq -1 \)[/tex].
Applying this rule to [tex]\( x^2 \)[/tex]:
[tex]\[ \int x^2 \, dx = \frac{x^{2+1}}{2+1} = \frac{x^3}{3} \][/tex]
3. Evaluate the definite integral using the Fundamental Theorem of Calculus.
The Fundamental Theorem of Calculus states that if [tex]\( F(x) \)[/tex] is an antiderivative of [tex]\( f(x) \)[/tex], then:
[tex]\[ \int_a^b f(x) \, dx = F(b) - F(a) \][/tex]
Here, our [tex]\( F(x) = \frac{x^3}{3} \)[/tex]. We need to evaluate this at the upper and lower limits of integration, [tex]\( x = 4 \)[/tex] and [tex]\( x = 1 \)[/tex], respectively.
[tex]\[ F(4) = \frac{4^3}{3} = \frac{64}{3} \][/tex]
[tex]\[ F(1) = \frac{1^3}{3} = \frac{1}{3} \][/tex]
4. Subtract the value of the antiderivative at the lower limit from the value at the upper limit.
[tex]\[ \int_1^4 x^2 \, dx = F(4) - F(1) = \frac{64}{3} - \frac{1}{3} \][/tex]
5. Simplify the expression.
Combine the fractions:
[tex]\[ \frac{64}{3} - \frac{1}{3} = \frac{64 - 1}{3} = \frac{63}{3} = 21 \][/tex]
Therefore, the value of the definite integral [tex]\( b = \int_1^4 x^2 \, dx \)[/tex] is:
[tex]\[ b = 21 \][/tex]
1. Identify the integrand and the limits of integration.
The integrand is [tex]\( x^2 \)[/tex] and the limits of integration are from [tex]\( 1 \)[/tex] to [tex]\( 4 \)[/tex].
2. Find the antiderivative of the integrand.
The antiderivative (or indefinite integral) of [tex]\( x^2 \)[/tex] is found by using the power rule for integration. The power rule states that:
[tex]\[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \][/tex]
for any real number [tex]\( n \neq -1 \)[/tex].
Applying this rule to [tex]\( x^2 \)[/tex]:
[tex]\[ \int x^2 \, dx = \frac{x^{2+1}}{2+1} = \frac{x^3}{3} \][/tex]
3. Evaluate the definite integral using the Fundamental Theorem of Calculus.
The Fundamental Theorem of Calculus states that if [tex]\( F(x) \)[/tex] is an antiderivative of [tex]\( f(x) \)[/tex], then:
[tex]\[ \int_a^b f(x) \, dx = F(b) - F(a) \][/tex]
Here, our [tex]\( F(x) = \frac{x^3}{3} \)[/tex]. We need to evaluate this at the upper and lower limits of integration, [tex]\( x = 4 \)[/tex] and [tex]\( x = 1 \)[/tex], respectively.
[tex]\[ F(4) = \frac{4^3}{3} = \frac{64}{3} \][/tex]
[tex]\[ F(1) = \frac{1^3}{3} = \frac{1}{3} \][/tex]
4. Subtract the value of the antiderivative at the lower limit from the value at the upper limit.
[tex]\[ \int_1^4 x^2 \, dx = F(4) - F(1) = \frac{64}{3} - \frac{1}{3} \][/tex]
5. Simplify the expression.
Combine the fractions:
[tex]\[ \frac{64}{3} - \frac{1}{3} = \frac{64 - 1}{3} = \frac{63}{3} = 21 \][/tex]
Therefore, the value of the definite integral [tex]\( b = \int_1^4 x^2 \, dx \)[/tex] is:
[tex]\[ b = 21 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.