Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Consider the exponential function [tex]\( f(x) = \frac{1}{5}(15^x) \)[/tex]. What is the value of the growth factor of the function?

A. [tex]\( \frac{1}{5} \)[/tex]
B. [tex]\( \frac{1}{3} \)[/tex]
C. 5
D. 15


Sagot :

To determine the growth factor of the exponential function [tex]\( f(x) = \frac{1}{5} \left(15^x\right) \)[/tex], we need to focus on the base of the exponent [tex]\( x \)[/tex].

An exponential function is generally of the form [tex]\( f(x) = A \cdot B^x \)[/tex], where:
- [tex]\( A \)[/tex] is a constant coefficient,
- [tex]\( B \)[/tex] is the base of the exponent and represents the growth factor.

In the given function [tex]\( f(x) = \frac{1}{5} \left(15^x\right) \)[/tex]:
- The coefficient [tex]\( A \)[/tex] is [tex]\( \frac{1}{5} \)[/tex],
- The base [tex]\( B \)[/tex] is 15.

The growth factor is identified by the base of the exponent term, which is 15 in this function.

Thus, the value of the growth factor is [tex]\( \boxed{15} \)[/tex].