Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
In a direct variation described by the equation [tex]\( y = kx \)[/tex], [tex]\( k \)[/tex] is known as the constant of variation. To find the constant of variation for the point [tex]\((-3, 2)\)[/tex], we need to determine the value of [tex]\( k \)[/tex] that satisfies the equation when [tex]\( x = -3 \)[/tex] and [tex]\( y = 2 \)[/tex].
Given the equation [tex]\( y = kx \)[/tex]:
1. Substitute the coordinates [tex]\((-3, 2)\)[/tex] into the equation.
[tex]\[ 2 = k(-3) \][/tex]
2. Solve for [tex]\( k \)[/tex] by isolating [tex]\( k \)[/tex].
[tex]\[ k = \frac{2}{-3} \][/tex]
Thus, the constant of variation is:
[tex]\[ k = -\frac{2}{3} \][/tex]
Therefore, the correct answer is:
[tex]\( k = -\frac{2}{3} \)[/tex]
Given the equation [tex]\( y = kx \)[/tex]:
1. Substitute the coordinates [tex]\((-3, 2)\)[/tex] into the equation.
[tex]\[ 2 = k(-3) \][/tex]
2. Solve for [tex]\( k \)[/tex] by isolating [tex]\( k \)[/tex].
[tex]\[ k = \frac{2}{-3} \][/tex]
Thus, the constant of variation is:
[tex]\[ k = -\frac{2}{3} \][/tex]
Therefore, the correct answer is:
[tex]\( k = -\frac{2}{3} \)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.