Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which inequality represents all values of [tex]\( x \)[/tex] for which the product [tex]\(\sqrt{5x} \cdot \sqrt{x+3}\)[/tex] is defined, we need to consider the conditions under which each square root expression is defined.
1. First Expression: [tex]\(\sqrt{5x}\)[/tex]
A square root [tex]\(\sqrt{5x}\)[/tex] is defined only when the expression inside the square root is non-negative. So, we need:
[tex]\[ 5x \geq 0 \][/tex]
Dividing both sides by 5:
[tex]\[ x \geq 0 \][/tex]
2. Second Expression: [tex]\(\sqrt{x+3}\)[/tex]
Similarly, the square root [tex]\(\sqrt{x+3}\)[/tex] is defined only when the expression inside is non-negative. Thus, we need:
[tex]\[ x+3 \geq 0 \][/tex]
Subtracting 3 from both sides:
[tex]\[ x \geq -3 \][/tex]
3. Combining the Inequalities
The product [tex]\(\sqrt{5x} \cdot \sqrt{x+3}\)[/tex] is only defined if both individual square roots are defined. Therefore, [tex]\( x \)[/tex] must satisfy both inequalities simultaneously:
[tex]\[ x \geq 0 \quad \text{and} \quad x \geq -3 \][/tex]
The more restrictive condition here is [tex]\( x \geq 0 \)[/tex]. In other words, if [tex]\( x \geq 0 \)[/tex], then it automatically satisfies the [tex]\( x \geq -3 \)[/tex] condition as well.
Therefore, the inequality that represents all values of [tex]\( x \)[/tex] for which the product [tex]\(\sqrt{5x} \cdot \sqrt{x+3}\)[/tex] is defined is:
[tex]\[ \boxed{x \geq 0} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{B} \][/tex]
1. First Expression: [tex]\(\sqrt{5x}\)[/tex]
A square root [tex]\(\sqrt{5x}\)[/tex] is defined only when the expression inside the square root is non-negative. So, we need:
[tex]\[ 5x \geq 0 \][/tex]
Dividing both sides by 5:
[tex]\[ x \geq 0 \][/tex]
2. Second Expression: [tex]\(\sqrt{x+3}\)[/tex]
Similarly, the square root [tex]\(\sqrt{x+3}\)[/tex] is defined only when the expression inside is non-negative. Thus, we need:
[tex]\[ x+3 \geq 0 \][/tex]
Subtracting 3 from both sides:
[tex]\[ x \geq -3 \][/tex]
3. Combining the Inequalities
The product [tex]\(\sqrt{5x} \cdot \sqrt{x+3}\)[/tex] is only defined if both individual square roots are defined. Therefore, [tex]\( x \)[/tex] must satisfy both inequalities simultaneously:
[tex]\[ x \geq 0 \quad \text{and} \quad x \geq -3 \][/tex]
The more restrictive condition here is [tex]\( x \geq 0 \)[/tex]. In other words, if [tex]\( x \geq 0 \)[/tex], then it automatically satisfies the [tex]\( x \geq -3 \)[/tex] condition as well.
Therefore, the inequality that represents all values of [tex]\( x \)[/tex] for which the product [tex]\(\sqrt{5x} \cdot \sqrt{x+3}\)[/tex] is defined is:
[tex]\[ \boxed{x \geq 0} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{B} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.