Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find which choice is equivalent to the quotient [tex]\(\sqrt{7 x^2} \div \sqrt{3 x}\)[/tex] for acceptable values of [tex]\(x\)[/tex], let's simplify the given expression step-by-step.
1. Start with the given expression:
[tex]\[ \frac{\sqrt{7 x^2}}{\sqrt{3 x}} \][/tex]
2. Combine the square roots into a single square root:
[tex]\[ \sqrt{\frac{7 x^2}{3 x}} \][/tex]
3. Simplify the fraction inside the square root:
[tex]\[ \frac{7 x^2}{3 x} = \frac{7}{3} \cdot \frac{x^2}{x} = \frac{7}{3} \cdot x = \frac{7 x}{3} \][/tex]
4. The simplified expression inside the square root is:
[tex]\[ \sqrt{\frac{7 x}{3}} \][/tex]
Therefore, the expression [tex]\(\sqrt{7 x^2} \div \sqrt{3 x}\)[/tex] simplifies to [tex]\(\sqrt{\frac{7 x}{3}}\)[/tex].
So, the correct choice is:
[tex]\[ \boxed{\sqrt{\frac{7 x}{3}}} \][/tex]
1. Start with the given expression:
[tex]\[ \frac{\sqrt{7 x^2}}{\sqrt{3 x}} \][/tex]
2. Combine the square roots into a single square root:
[tex]\[ \sqrt{\frac{7 x^2}{3 x}} \][/tex]
3. Simplify the fraction inside the square root:
[tex]\[ \frac{7 x^2}{3 x} = \frac{7}{3} \cdot \frac{x^2}{x} = \frac{7}{3} \cdot x = \frac{7 x}{3} \][/tex]
4. The simplified expression inside the square root is:
[tex]\[ \sqrt{\frac{7 x}{3}} \][/tex]
Therefore, the expression [tex]\(\sqrt{7 x^2} \div \sqrt{3 x}\)[/tex] simplifies to [tex]\(\sqrt{\frac{7 x}{3}}\)[/tex].
So, the correct choice is:
[tex]\[ \boxed{\sqrt{\frac{7 x}{3}}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.