Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which two events are independent, we need to check if the probabilities of their intersections equal the product of their individual probabilities. An event [tex]\( X \)[/tex] and [tex]\( Y \)[/tex] are independent if and only if [tex]\( P(X \cap Y) = P(X) \cdot P(Y) \)[/tex].
Let's find the given probabilities step by step.
1. Calculate the total probabilities for each event:
- Event [tex]\( A \)[/tex] (Male): [tex]\( P(A) = \frac{36}{60} = 0.6 \)[/tex]
- Event [tex]\( B \)[/tex] (Female): [tex]\( P(B) = \frac{24}{60} = 0.4 \)[/tex]
- Event [tex]\( C \)[/tex] (Public Transportation): [tex]\( P(C) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( D \)[/tex] (Own Transportation): [tex]\( P(D) = \frac{30}{60} = 0.5 \)[/tex]
- Event [tex]\( E \)[/tex] (Other Transportation): [tex]\( P(E) = \frac{10}{60} \approx 0.1667 \)[/tex]
2. Calculate the intersection probabilities:
- Event [tex]\( A \cap C \)[/tex] (Male and Public Transportation): [tex]\( P(A \cap C) = \frac{12}{60} = 0.2 \)[/tex]
- Event [tex]\( A \cap D \)[/tex] (Male and Own Transportation): [tex]\( P(A \cap D) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( B \cap D \)[/tex] (Female and Own Transportation): [tex]\( P(B \cap D) = \frac{10}{60} \approx 0.1667 \)[/tex]
- Event [tex]\( B \cap E \)[/tex] (Female and Other Transportation): [tex]\( P(B \cap E) = \frac{6}{60} = 0.1 \)[/tex]
3. Check the independence conditions:
- For [tex]\( A \)[/tex] and [tex]\( C \)[/tex]:
[tex]\[ P(A \cap C) = 0.2 \qquad P(A) \cdot P(C) = 0.6 \cdot 0.3333 \approx 0.2 \][/tex]
[tex]\( \text{Since } P(A \cap C) \neq P(A) \cdot P(C), \text{ they are not independent.} \)[/tex]
- For [tex]\( A \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(A \cap D) \approx 0.3333 \qquad P(A) \cdot P(D) = 0.6 \cdot 0.5 = 0.3 \][/tex]
[tex]\( \text{Since } P(A \cap D) \neq P(A) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(B \cap D) \approx 0.1667 \qquad P(B) \cdot P(D) = 0.4 \cdot 0.5 = 0.2 \][/tex]
[tex]\( \text{Since } P(B \cap D) \neq P(B) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( E \)[/tex]:
[tex]\[ P(B \cap E) = 0.1 \qquad P(B) \cdot P(E) = 0.4 \cdot 0.1667 \approx 0.0667 \][/tex]
[tex]\( \text{Since } P(B \cap E) \neq P(B) \cdot P(E), \text{ they are not independent.} \)[/tex]
Therefore, none of the given event pairs [tex]\((A \text{ and } C, A \text{ and } D, B \text{ and } D, B \text{ and } E)\)[/tex] are independent. Hence, there are no two independent events in the given data set.
Let's find the given probabilities step by step.
1. Calculate the total probabilities for each event:
- Event [tex]\( A \)[/tex] (Male): [tex]\( P(A) = \frac{36}{60} = 0.6 \)[/tex]
- Event [tex]\( B \)[/tex] (Female): [tex]\( P(B) = \frac{24}{60} = 0.4 \)[/tex]
- Event [tex]\( C \)[/tex] (Public Transportation): [tex]\( P(C) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( D \)[/tex] (Own Transportation): [tex]\( P(D) = \frac{30}{60} = 0.5 \)[/tex]
- Event [tex]\( E \)[/tex] (Other Transportation): [tex]\( P(E) = \frac{10}{60} \approx 0.1667 \)[/tex]
2. Calculate the intersection probabilities:
- Event [tex]\( A \cap C \)[/tex] (Male and Public Transportation): [tex]\( P(A \cap C) = \frac{12}{60} = 0.2 \)[/tex]
- Event [tex]\( A \cap D \)[/tex] (Male and Own Transportation): [tex]\( P(A \cap D) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( B \cap D \)[/tex] (Female and Own Transportation): [tex]\( P(B \cap D) = \frac{10}{60} \approx 0.1667 \)[/tex]
- Event [tex]\( B \cap E \)[/tex] (Female and Other Transportation): [tex]\( P(B \cap E) = \frac{6}{60} = 0.1 \)[/tex]
3. Check the independence conditions:
- For [tex]\( A \)[/tex] and [tex]\( C \)[/tex]:
[tex]\[ P(A \cap C) = 0.2 \qquad P(A) \cdot P(C) = 0.6 \cdot 0.3333 \approx 0.2 \][/tex]
[tex]\( \text{Since } P(A \cap C) \neq P(A) \cdot P(C), \text{ they are not independent.} \)[/tex]
- For [tex]\( A \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(A \cap D) \approx 0.3333 \qquad P(A) \cdot P(D) = 0.6 \cdot 0.5 = 0.3 \][/tex]
[tex]\( \text{Since } P(A \cap D) \neq P(A) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(B \cap D) \approx 0.1667 \qquad P(B) \cdot P(D) = 0.4 \cdot 0.5 = 0.2 \][/tex]
[tex]\( \text{Since } P(B \cap D) \neq P(B) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( E \)[/tex]:
[tex]\[ P(B \cap E) = 0.1 \qquad P(B) \cdot P(E) = 0.4 \cdot 0.1667 \approx 0.0667 \][/tex]
[tex]\( \text{Since } P(B \cap E) \neq P(B) \cdot P(E), \text{ they are not independent.} \)[/tex]
Therefore, none of the given event pairs [tex]\((A \text{ and } C, A \text{ and } D, B \text{ and } D, B \text{ and } E)\)[/tex] are independent. Hence, there are no two independent events in the given data set.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.