Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which two events are independent, we need to check if the probabilities of their intersections equal the product of their individual probabilities. An event [tex]\( X \)[/tex] and [tex]\( Y \)[/tex] are independent if and only if [tex]\( P(X \cap Y) = P(X) \cdot P(Y) \)[/tex].
Let's find the given probabilities step by step.
1. Calculate the total probabilities for each event:
- Event [tex]\( A \)[/tex] (Male): [tex]\( P(A) = \frac{36}{60} = 0.6 \)[/tex]
- Event [tex]\( B \)[/tex] (Female): [tex]\( P(B) = \frac{24}{60} = 0.4 \)[/tex]
- Event [tex]\( C \)[/tex] (Public Transportation): [tex]\( P(C) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( D \)[/tex] (Own Transportation): [tex]\( P(D) = \frac{30}{60} = 0.5 \)[/tex]
- Event [tex]\( E \)[/tex] (Other Transportation): [tex]\( P(E) = \frac{10}{60} \approx 0.1667 \)[/tex]
2. Calculate the intersection probabilities:
- Event [tex]\( A \cap C \)[/tex] (Male and Public Transportation): [tex]\( P(A \cap C) = \frac{12}{60} = 0.2 \)[/tex]
- Event [tex]\( A \cap D \)[/tex] (Male and Own Transportation): [tex]\( P(A \cap D) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( B \cap D \)[/tex] (Female and Own Transportation): [tex]\( P(B \cap D) = \frac{10}{60} \approx 0.1667 \)[/tex]
- Event [tex]\( B \cap E \)[/tex] (Female and Other Transportation): [tex]\( P(B \cap E) = \frac{6}{60} = 0.1 \)[/tex]
3. Check the independence conditions:
- For [tex]\( A \)[/tex] and [tex]\( C \)[/tex]:
[tex]\[ P(A \cap C) = 0.2 \qquad P(A) \cdot P(C) = 0.6 \cdot 0.3333 \approx 0.2 \][/tex]
[tex]\( \text{Since } P(A \cap C) \neq P(A) \cdot P(C), \text{ they are not independent.} \)[/tex]
- For [tex]\( A \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(A \cap D) \approx 0.3333 \qquad P(A) \cdot P(D) = 0.6 \cdot 0.5 = 0.3 \][/tex]
[tex]\( \text{Since } P(A \cap D) \neq P(A) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(B \cap D) \approx 0.1667 \qquad P(B) \cdot P(D) = 0.4 \cdot 0.5 = 0.2 \][/tex]
[tex]\( \text{Since } P(B \cap D) \neq P(B) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( E \)[/tex]:
[tex]\[ P(B \cap E) = 0.1 \qquad P(B) \cdot P(E) = 0.4 \cdot 0.1667 \approx 0.0667 \][/tex]
[tex]\( \text{Since } P(B \cap E) \neq P(B) \cdot P(E), \text{ they are not independent.} \)[/tex]
Therefore, none of the given event pairs [tex]\((A \text{ and } C, A \text{ and } D, B \text{ and } D, B \text{ and } E)\)[/tex] are independent. Hence, there are no two independent events in the given data set.
Let's find the given probabilities step by step.
1. Calculate the total probabilities for each event:
- Event [tex]\( A \)[/tex] (Male): [tex]\( P(A) = \frac{36}{60} = 0.6 \)[/tex]
- Event [tex]\( B \)[/tex] (Female): [tex]\( P(B) = \frac{24}{60} = 0.4 \)[/tex]
- Event [tex]\( C \)[/tex] (Public Transportation): [tex]\( P(C) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( D \)[/tex] (Own Transportation): [tex]\( P(D) = \frac{30}{60} = 0.5 \)[/tex]
- Event [tex]\( E \)[/tex] (Other Transportation): [tex]\( P(E) = \frac{10}{60} \approx 0.1667 \)[/tex]
2. Calculate the intersection probabilities:
- Event [tex]\( A \cap C \)[/tex] (Male and Public Transportation): [tex]\( P(A \cap C) = \frac{12}{60} = 0.2 \)[/tex]
- Event [tex]\( A \cap D \)[/tex] (Male and Own Transportation): [tex]\( P(A \cap D) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( B \cap D \)[/tex] (Female and Own Transportation): [tex]\( P(B \cap D) = \frac{10}{60} \approx 0.1667 \)[/tex]
- Event [tex]\( B \cap E \)[/tex] (Female and Other Transportation): [tex]\( P(B \cap E) = \frac{6}{60} = 0.1 \)[/tex]
3. Check the independence conditions:
- For [tex]\( A \)[/tex] and [tex]\( C \)[/tex]:
[tex]\[ P(A \cap C) = 0.2 \qquad P(A) \cdot P(C) = 0.6 \cdot 0.3333 \approx 0.2 \][/tex]
[tex]\( \text{Since } P(A \cap C) \neq P(A) \cdot P(C), \text{ they are not independent.} \)[/tex]
- For [tex]\( A \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(A \cap D) \approx 0.3333 \qquad P(A) \cdot P(D) = 0.6 \cdot 0.5 = 0.3 \][/tex]
[tex]\( \text{Since } P(A \cap D) \neq P(A) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(B \cap D) \approx 0.1667 \qquad P(B) \cdot P(D) = 0.4 \cdot 0.5 = 0.2 \][/tex]
[tex]\( \text{Since } P(B \cap D) \neq P(B) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( E \)[/tex]:
[tex]\[ P(B \cap E) = 0.1 \qquad P(B) \cdot P(E) = 0.4 \cdot 0.1667 \approx 0.0667 \][/tex]
[tex]\( \text{Since } P(B \cap E) \neq P(B) \cdot P(E), \text{ they are not independent.} \)[/tex]
Therefore, none of the given event pairs [tex]\((A \text{ and } C, A \text{ and } D, B \text{ and } D, B \text{ and } E)\)[/tex] are independent. Hence, there are no two independent events in the given data set.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.