At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which two events are independent, we need to check if the probabilities of their intersections equal the product of their individual probabilities. An event [tex]\( X \)[/tex] and [tex]\( Y \)[/tex] are independent if and only if [tex]\( P(X \cap Y) = P(X) \cdot P(Y) \)[/tex].
Let's find the given probabilities step by step.
1. Calculate the total probabilities for each event:
- Event [tex]\( A \)[/tex] (Male): [tex]\( P(A) = \frac{36}{60} = 0.6 \)[/tex]
- Event [tex]\( B \)[/tex] (Female): [tex]\( P(B) = \frac{24}{60} = 0.4 \)[/tex]
- Event [tex]\( C \)[/tex] (Public Transportation): [tex]\( P(C) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( D \)[/tex] (Own Transportation): [tex]\( P(D) = \frac{30}{60} = 0.5 \)[/tex]
- Event [tex]\( E \)[/tex] (Other Transportation): [tex]\( P(E) = \frac{10}{60} \approx 0.1667 \)[/tex]
2. Calculate the intersection probabilities:
- Event [tex]\( A \cap C \)[/tex] (Male and Public Transportation): [tex]\( P(A \cap C) = \frac{12}{60} = 0.2 \)[/tex]
- Event [tex]\( A \cap D \)[/tex] (Male and Own Transportation): [tex]\( P(A \cap D) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( B \cap D \)[/tex] (Female and Own Transportation): [tex]\( P(B \cap D) = \frac{10}{60} \approx 0.1667 \)[/tex]
- Event [tex]\( B \cap E \)[/tex] (Female and Other Transportation): [tex]\( P(B \cap E) = \frac{6}{60} = 0.1 \)[/tex]
3. Check the independence conditions:
- For [tex]\( A \)[/tex] and [tex]\( C \)[/tex]:
[tex]\[ P(A \cap C) = 0.2 \qquad P(A) \cdot P(C) = 0.6 \cdot 0.3333 \approx 0.2 \][/tex]
[tex]\( \text{Since } P(A \cap C) \neq P(A) \cdot P(C), \text{ they are not independent.} \)[/tex]
- For [tex]\( A \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(A \cap D) \approx 0.3333 \qquad P(A) \cdot P(D) = 0.6 \cdot 0.5 = 0.3 \][/tex]
[tex]\( \text{Since } P(A \cap D) \neq P(A) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(B \cap D) \approx 0.1667 \qquad P(B) \cdot P(D) = 0.4 \cdot 0.5 = 0.2 \][/tex]
[tex]\( \text{Since } P(B \cap D) \neq P(B) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( E \)[/tex]:
[tex]\[ P(B \cap E) = 0.1 \qquad P(B) \cdot P(E) = 0.4 \cdot 0.1667 \approx 0.0667 \][/tex]
[tex]\( \text{Since } P(B \cap E) \neq P(B) \cdot P(E), \text{ they are not independent.} \)[/tex]
Therefore, none of the given event pairs [tex]\((A \text{ and } C, A \text{ and } D, B \text{ and } D, B \text{ and } E)\)[/tex] are independent. Hence, there are no two independent events in the given data set.
Let's find the given probabilities step by step.
1. Calculate the total probabilities for each event:
- Event [tex]\( A \)[/tex] (Male): [tex]\( P(A) = \frac{36}{60} = 0.6 \)[/tex]
- Event [tex]\( B \)[/tex] (Female): [tex]\( P(B) = \frac{24}{60} = 0.4 \)[/tex]
- Event [tex]\( C \)[/tex] (Public Transportation): [tex]\( P(C) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( D \)[/tex] (Own Transportation): [tex]\( P(D) = \frac{30}{60} = 0.5 \)[/tex]
- Event [tex]\( E \)[/tex] (Other Transportation): [tex]\( P(E) = \frac{10}{60} \approx 0.1667 \)[/tex]
2. Calculate the intersection probabilities:
- Event [tex]\( A \cap C \)[/tex] (Male and Public Transportation): [tex]\( P(A \cap C) = \frac{12}{60} = 0.2 \)[/tex]
- Event [tex]\( A \cap D \)[/tex] (Male and Own Transportation): [tex]\( P(A \cap D) = \frac{20}{60} \approx 0.3333 \)[/tex]
- Event [tex]\( B \cap D \)[/tex] (Female and Own Transportation): [tex]\( P(B \cap D) = \frac{10}{60} \approx 0.1667 \)[/tex]
- Event [tex]\( B \cap E \)[/tex] (Female and Other Transportation): [tex]\( P(B \cap E) = \frac{6}{60} = 0.1 \)[/tex]
3. Check the independence conditions:
- For [tex]\( A \)[/tex] and [tex]\( C \)[/tex]:
[tex]\[ P(A \cap C) = 0.2 \qquad P(A) \cdot P(C) = 0.6 \cdot 0.3333 \approx 0.2 \][/tex]
[tex]\( \text{Since } P(A \cap C) \neq P(A) \cdot P(C), \text{ they are not independent.} \)[/tex]
- For [tex]\( A \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(A \cap D) \approx 0.3333 \qquad P(A) \cdot P(D) = 0.6 \cdot 0.5 = 0.3 \][/tex]
[tex]\( \text{Since } P(A \cap D) \neq P(A) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ P(B \cap D) \approx 0.1667 \qquad P(B) \cdot P(D) = 0.4 \cdot 0.5 = 0.2 \][/tex]
[tex]\( \text{Since } P(B \cap D) \neq P(B) \cdot P(D), \text{ they are not independent.} \)[/tex]
- For [tex]\( B \)[/tex] and [tex]\( E \)[/tex]:
[tex]\[ P(B \cap E) = 0.1 \qquad P(B) \cdot P(E) = 0.4 \cdot 0.1667 \approx 0.0667 \][/tex]
[tex]\( \text{Since } P(B \cap E) \neq P(B) \cdot P(E), \text{ they are not independent.} \)[/tex]
Therefore, none of the given event pairs [tex]\((A \text{ and } C, A \text{ and } D, B \text{ and } D, B \text{ and } E)\)[/tex] are independent. Hence, there are no two independent events in the given data set.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.