Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the range of the function [tex]\( f(x) = -|x| - 3 \)[/tex], let's analyze its behavior step by step.
1. Understanding [tex]\( |x| \)[/tex]:
- The notation [tex]\( |x| \)[/tex] represents the absolute value of [tex]\( x \)[/tex], which is always non-negative. That is, [tex]\( |x| \geq 0 \)[/tex] for any real number [tex]\( x \)[/tex].
2. Implications for [tex]\( -|x| \)[/tex]:
- Since [tex]\( |x| \geq 0 \)[/tex], the expression [tex]\( -|x| \)[/tex] will be less than or equal to 0 because negating a non-negative number results in a non-positive number. Therefore, [tex]\( -|x| \leq 0 \)[/tex].
3. Combining with the constant:
- The function [tex]\( f(x) \)[/tex] adds [tex]\(-|x|\)[/tex] to [tex]\(-3\)[/tex]. So we have [tex]\( f(x) = -|x| - 3 \)[/tex].
- Since [tex]\( -|x| \leq 0 \)[/tex], adding [tex]\(-3\)[/tex] means we are subtracting 3 from a non-positive number.
4. Finding the minimum value:
- For [tex]\( x = 0 \)[/tex], [tex]\( |x| = 0 \)[/tex]. Hence, [tex]\( f(0) = -|0| - 3 = -3 \)[/tex].
- This is the maximum value of [tex]\( f(x) \)[/tex] because for any other [tex]\( x \)[/tex], [tex]\( |x| \)[/tex] will be greater than 0, making [tex]\( -|x| \)[/tex] more negative and thus making [tex]\( f(x) \)[/tex] less than [tex]\(-3\)[/tex].
5. Determining the range:
- As [tex]\(|x|\)[/tex] increases from 0 to positive infinity, [tex]\( -|x| \)[/tex] will go from 0 to negative infinity, and hence [tex]\( f(x) = -|x| - 3 \)[/tex] will go from [tex]\(-3\)[/tex] towards negative infinity.
- Therefore, [tex]\( f(x) \)[/tex] can take any value that is less than or equal to [tex]\(-3\)[/tex].
In conclusion, the range of the function [tex]\( f(x) = -|x| - 3 \)[/tex] is:
All real numbers less than or equal to [tex]\(-3\)[/tex].
1. Understanding [tex]\( |x| \)[/tex]:
- The notation [tex]\( |x| \)[/tex] represents the absolute value of [tex]\( x \)[/tex], which is always non-negative. That is, [tex]\( |x| \geq 0 \)[/tex] for any real number [tex]\( x \)[/tex].
2. Implications for [tex]\( -|x| \)[/tex]:
- Since [tex]\( |x| \geq 0 \)[/tex], the expression [tex]\( -|x| \)[/tex] will be less than or equal to 0 because negating a non-negative number results in a non-positive number. Therefore, [tex]\( -|x| \leq 0 \)[/tex].
3. Combining with the constant:
- The function [tex]\( f(x) \)[/tex] adds [tex]\(-|x|\)[/tex] to [tex]\(-3\)[/tex]. So we have [tex]\( f(x) = -|x| - 3 \)[/tex].
- Since [tex]\( -|x| \leq 0 \)[/tex], adding [tex]\(-3\)[/tex] means we are subtracting 3 from a non-positive number.
4. Finding the minimum value:
- For [tex]\( x = 0 \)[/tex], [tex]\( |x| = 0 \)[/tex]. Hence, [tex]\( f(0) = -|0| - 3 = -3 \)[/tex].
- This is the maximum value of [tex]\( f(x) \)[/tex] because for any other [tex]\( x \)[/tex], [tex]\( |x| \)[/tex] will be greater than 0, making [tex]\( -|x| \)[/tex] more negative and thus making [tex]\( f(x) \)[/tex] less than [tex]\(-3\)[/tex].
5. Determining the range:
- As [tex]\(|x|\)[/tex] increases from 0 to positive infinity, [tex]\( -|x| \)[/tex] will go from 0 to negative infinity, and hence [tex]\( f(x) = -|x| - 3 \)[/tex] will go from [tex]\(-3\)[/tex] towards negative infinity.
- Therefore, [tex]\( f(x) \)[/tex] can take any value that is less than or equal to [tex]\(-3\)[/tex].
In conclusion, the range of the function [tex]\( f(x) = -|x| - 3 \)[/tex] is:
All real numbers less than or equal to [tex]\(-3\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.