At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Consider the following functions:

[tex]\( f(x) = -2x \)[/tex] and [tex]\( g(x) = x - 3 \)[/tex]

Step 1: Find the formula for [tex]\((f + g)(x)\)[/tex] and simplify your answer. Then find the domain for [tex]\((f + g)(x)\)[/tex]. Round your answer to two decimal places, if necessary.

Sagot :

Certainly! Let's go through the steps in detail.

### Step 1: Find the formula for [tex]\((f+g)(x)\)[/tex]

Given the functions:
[tex]\[ f(x) = -2x \][/tex]
[tex]\[ g(x) = x - 3 \][/tex]

The combined function [tex]\((f+g)(x)\)[/tex] is defined as the sum of [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
[tex]\[ (f + g)(x) = f(x) + g(x) \][/tex]

Now, substituting the expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex], we get:
[tex]\[ (f + g)(x) = -2x + (x - 3) \][/tex]

### Simplify the formula for [tex]\((f+g)(x)\)[/tex]

Let's simplify this expression step by step:
[tex]\[ (f + g)(x) = -2x + x - 3 \][/tex]

Combine like terms:
[tex]\[ (f + g)(x) = -2x + x - 3 \][/tex]
[tex]\[ (f + g)(x) = -x - 3 \][/tex]

Thus, the simplified formula for [tex]\((f+g)(x)\)[/tex] is:
[tex]\[ (f+g)(x) = -x - 3 \][/tex]

### Step 2: Find the domain of [tex]\((f+g)(x)\)[/tex]

The domain of a function is the set of all possible values of [tex]\(x\)[/tex] for which the function is defined.

### Analyzing domains of [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:

- The function [tex]\(f(x) = -2x\)[/tex] is defined for all real numbers, as there are no restrictions on [tex]\(x\)[/tex].
- The function [tex]\(g(x) = x - 3\)[/tex] is also defined for all real numbers, as there are no restrictions on [tex]\(x\)[/tex].

Since both [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] are defined for all real numbers, the domain of [tex]\((f+g)(x)\)[/tex] is also all real numbers.

### Conclusion:

The simplified formula for [tex]\((f+g)(x)\)[/tex] is:
[tex]\[ (f+g)(x) = -x - 3 \][/tex]

The domain for [tex]\((f+g)(x)\)[/tex] is:
[tex]\[ \text{all real numbers} \][/tex]

So, the final answers are:
- The formula for [tex]\((f+g)(x)\)[/tex] is: [tex]\[ -x - 3 \][/tex]
- The domain for [tex]\((f+g)(x)\)[/tex] is: [tex]\[ \text{all real numbers} \][/tex]