Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To sketch two periods of the graph of the function [tex]\( p(x) = \tan\left(x - \frac{\pi}{4}\right) \)[/tex], we'll need to identify its stretching factor, period, and asymptotes.
### Stretching Factor:
The function [tex]\( \tan\left(x - \frac{\pi}{4}\right) \)[/tex] does not have a coefficient that modifies the tangent term directly (in the form of [tex]\( A \cdot \tan(B(x - C)) \)[/tex]). Hence, the stretching factor of the tangent function remains:
[tex]\[ \text{Stretching factor} = 1 \][/tex]
### Period:
The period of the tangent function [tex]\( \tan(x) \)[/tex] is [tex]\( \pi \)[/tex]. For the function [tex]\( p(x) = \tan\left(x - \frac{\pi}{4}\right) \)[/tex], the horizontal shift (in this case, [tex]\(\frac{\pi}{4}\)[/tex]) does not affect the period. Therefore, the period of [tex]\( p(x) \)[/tex] is:
[tex]\[ \text{Period} = \pi \][/tex]
### Asymptotes:
The vertical asymptotes of the standard tangent function occur where the argument of the tangent function is of the form [tex]\( \frac{\pi}{2} + k\pi \)[/tex], where [tex]\( k \)[/tex] is an integer. For the function [tex]\( p(x) = \tan\left(x - \frac{\pi}{4}\right) \)[/tex], the argument will be undefined where:
[tex]\[ x - \frac{\pi}{4} = \frac{\pi}{2} + k\pi \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ x = \frac{\pi}{4} + \frac{\pi}{2} + k\pi = \frac{\pi}{4} + \left(2k+1\right)\frac{\pi}{2} \][/tex]
By considering [tex]\( k = -1, 0, 1 \)[/tex] (covering two periods around the origin), the asymptotes within the domain [tex]\([-P, P]\)[/tex] where [tex]\( P = \pi \)[/tex] are:
[tex]\[ x = -\frac{\pi}{4}, \quad x = \frac{3\pi}{4}, \quad x = \frac{7\pi}{4} \][/tex]
These intervals are correctly placed within two periods because:
[tex]\[ - \frac{\pi}{4} \][/tex]
is less than [tex]\[((2 - 1)·pi / 2\) = ((1·Pi)/2) \[= \pi\][/tex]
\[
\frac{3\pi}{4}, \space approximately
x = \frac{\pi}{4} + 1*pi/2. roughly and right at
\frac{7\pi}{4}, \ (but not exactly at).
Thus we get the following approximation values noted below as
close intervals within approximately these domains once we correct small fractions into a rounded set.
So, the exact coordinates will be noted as:
### Answers
- Stretching factor [tex]\( = 1 \)[/tex]
- Period: [tex]\( P = \pi \)[/tex]
- Asymptotes: [tex]\( x=-\frac{\pi}{4}; \ x = \frac{3\pi}{4}; x = \frac{7\pi}{4} \)[/tex].
### Stretching Factor:
The function [tex]\( \tan\left(x - \frac{\pi}{4}\right) \)[/tex] does not have a coefficient that modifies the tangent term directly (in the form of [tex]\( A \cdot \tan(B(x - C)) \)[/tex]). Hence, the stretching factor of the tangent function remains:
[tex]\[ \text{Stretching factor} = 1 \][/tex]
### Period:
The period of the tangent function [tex]\( \tan(x) \)[/tex] is [tex]\( \pi \)[/tex]. For the function [tex]\( p(x) = \tan\left(x - \frac{\pi}{4}\right) \)[/tex], the horizontal shift (in this case, [tex]\(\frac{\pi}{4}\)[/tex]) does not affect the period. Therefore, the period of [tex]\( p(x) \)[/tex] is:
[tex]\[ \text{Period} = \pi \][/tex]
### Asymptotes:
The vertical asymptotes of the standard tangent function occur where the argument of the tangent function is of the form [tex]\( \frac{\pi}{2} + k\pi \)[/tex], where [tex]\( k \)[/tex] is an integer. For the function [tex]\( p(x) = \tan\left(x - \frac{\pi}{4}\right) \)[/tex], the argument will be undefined where:
[tex]\[ x - \frac{\pi}{4} = \frac{\pi}{2} + k\pi \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ x = \frac{\pi}{4} + \frac{\pi}{2} + k\pi = \frac{\pi}{4} + \left(2k+1\right)\frac{\pi}{2} \][/tex]
By considering [tex]\( k = -1, 0, 1 \)[/tex] (covering two periods around the origin), the asymptotes within the domain [tex]\([-P, P]\)[/tex] where [tex]\( P = \pi \)[/tex] are:
[tex]\[ x = -\frac{\pi}{4}, \quad x = \frac{3\pi}{4}, \quad x = \frac{7\pi}{4} \][/tex]
These intervals are correctly placed within two periods because:
[tex]\[ - \frac{\pi}{4} \][/tex]
is less than [tex]\[((2 - 1)·pi / 2\) = ((1·Pi)/2) \[= \pi\][/tex]
\[
\frac{3\pi}{4}, \space approximately
x = \frac{\pi}{4} + 1*pi/2. roughly and right at
\frac{7\pi}{4}, \ (but not exactly at).
Thus we get the following approximation values noted below as
close intervals within approximately these domains once we correct small fractions into a rounded set.
So, the exact coordinates will be noted as:
### Answers
- Stretching factor [tex]\( = 1 \)[/tex]
- Period: [tex]\( P = \pi \)[/tex]
- Asymptotes: [tex]\( x=-\frac{\pi}{4}; \ x = \frac{3\pi}{4}; x = \frac{7\pi}{4} \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.