Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the equation [tex]\( f(x) = 16x^4 - 81 = 0 \)[/tex], we need to find the values of [tex]\( x \)[/tex] that satisfy this equation. Let's break it down into detailed steps:
1. Rewrite the Equation: Start with the given equation:
[tex]\[ 16x^4 - 81 = 0 \][/tex]
2. Move the Constant Term: Add 81 to both sides of the equation to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 16x^4 = 81 \][/tex]
3. Solve for [tex]\( x^4 \)[/tex]: Divide both sides by 16 to solve for [tex]\( x^4 \)[/tex]:
[tex]\[ x^4 = \frac{81}{16} \][/tex]
4. Simplify the Fraction: Notice that [tex]\( \frac{81}{16} \)[/tex] is a perfect fourth power, which makes it easier to take the fourth root:
[tex]\[ x^4 = \left(\frac{3}{2}\right)^4 \][/tex]
5. Take the Fourth Root: To find [tex]\( x \)[/tex], take the fourth root of both sides. Remember that taking the fourth root of a number can yield both real and complex solutions:
[tex]\[ x = \pm \frac{3}{2}, \quad x = \pm \frac{3i}{2} \][/tex]
Thus, the solutions to the equation [tex]\( 16x^4 - 81 = 0 \)[/tex] are:
[tex]\[ x = -\frac{3}{2}, \quad x = \frac{3}{2}, \quad x = -\frac{3i}{2}, \quad x = \frac{3i}{2} \][/tex]
Therefore, the equivalent solutions for the equation [tex]\( f(x) = 16x^4 - 81 = 0 \)[/tex] are:
[tex]\[ x = -\frac{3}{2}, \quad x = \frac{3}{2}, \quad x = -\frac{3i}{2}, \quad x = \frac{3i}{2} \][/tex]
These solutions satisfy the original equation.
1. Rewrite the Equation: Start with the given equation:
[tex]\[ 16x^4 - 81 = 0 \][/tex]
2. Move the Constant Term: Add 81 to both sides of the equation to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 16x^4 = 81 \][/tex]
3. Solve for [tex]\( x^4 \)[/tex]: Divide both sides by 16 to solve for [tex]\( x^4 \)[/tex]:
[tex]\[ x^4 = \frac{81}{16} \][/tex]
4. Simplify the Fraction: Notice that [tex]\( \frac{81}{16} \)[/tex] is a perfect fourth power, which makes it easier to take the fourth root:
[tex]\[ x^4 = \left(\frac{3}{2}\right)^4 \][/tex]
5. Take the Fourth Root: To find [tex]\( x \)[/tex], take the fourth root of both sides. Remember that taking the fourth root of a number can yield both real and complex solutions:
[tex]\[ x = \pm \frac{3}{2}, \quad x = \pm \frac{3i}{2} \][/tex]
Thus, the solutions to the equation [tex]\( 16x^4 - 81 = 0 \)[/tex] are:
[tex]\[ x = -\frac{3}{2}, \quad x = \frac{3}{2}, \quad x = -\frac{3i}{2}, \quad x = \frac{3i}{2} \][/tex]
Therefore, the equivalent solutions for the equation [tex]\( f(x) = 16x^4 - 81 = 0 \)[/tex] are:
[tex]\[ x = -\frac{3}{2}, \quad x = \frac{3}{2}, \quad x = -\frac{3i}{2}, \quad x = \frac{3i}{2} \][/tex]
These solutions satisfy the original equation.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.