Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

2. Express each of the following in power notation:

(i) [tex]\(\frac{25}{36}\)[/tex]

(ii) [tex]\(\frac{-27}{64}\)[/tex]

(iii) [tex]\(\frac{-32}{243}\)[/tex]

(iv) [tex]\(\frac{-1}{128}\)[/tex]


Sagot :

Sure, let's break down each of the given fractions into power notation:

### (i) [tex]\(\frac{25}{36}\)[/tex]

First, identify the base numbers and their respective exponents:
- [tex]\(25 = 5^2\)[/tex]
- [tex]\(36 = 6^2\)[/tex]

Therefore,

[tex]\[ \frac{25}{36} = \frac{5^2}{6^2} \][/tex]

### (ii) [tex]\(\frac{-27}{64}\)[/tex]

Next, we identify the base numbers and their respective exponents:
- [tex]\(-27 = (-3)^3\)[/tex]
- [tex]\(64 = 4^3\)[/tex]

Therefore,

[tex]\[ \frac{-27}{64} = \frac{(-3)^3}{4^3} \][/tex]

### (iii) [tex]\(\frac{-32}{243}\)[/tex]

Again, we identify the base numbers and their respective exponents:
- [tex]\(-32 = (-2)^5\)[/tex]
- [tex]\(243 = 3^5\)[/tex]

Therefore,

[tex]\[ \frac{-32}{243} = \frac{(-2)^5}{3^5} \][/tex]

### (iv) [tex]\(\frac{-1}{128}\)[/tex]

Finally, we identify the base numbers and their respective exponents:
- [tex]\(-1 = (-1)^7\)[/tex]
- [tex]\(128 = 2^7\)[/tex]

Therefore,

[tex]\[ \frac{-1}{128} = \frac{(-1)^7}{2^7} \][/tex]

The power notations for the given fractions are:

(i) [tex]\(\frac{5^2}{6^2}\)[/tex]
(ii) [tex]\(\frac{(-3)^3}{4^3}\)[/tex]
(iii) [tex]\(\frac{(-2)^5}{3^5}\)[/tex]
(iv) [tex]\(\frac{(-1)^7}{2^7}\)[/tex]

To summarize:

- [tex]\(\frac{25}{36} = \frac{5^2}{6^2}\)[/tex]
- [tex]\(\frac{-27}{64} = \frac{(-3)^3}{4^3}\)[/tex]
- [tex]\(\frac{-32}{243} = \frac{(-2)^5}{3^5}\)[/tex]
- [tex]\(\frac{-1}{128} = \frac{(-1)^7}{2^7}\)[/tex]

These are the detailed steps to express each of the given fractions in power notation.