Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! Let's arrange the equations in the correct sequence to isolate [tex]\( a \)[/tex] in the given formula [tex]\( d = v_0 t + \frac{1}{2} a t^2 \)[/tex].
Step 1: Subtract [tex]\( v_0 t \)[/tex] from both sides to isolate the term with [tex]\( a \)[/tex]:
[tex]\[ d - v_0 t = \frac{1}{2} a t^2 \][/tex]
Step 2: Multiply both sides by 2 to eliminate the fraction:
[tex]\[ 2 (d - v_0 t) = a t^2 \][/tex]
Step 3: Divide both sides by [tex]\( t^2 \)[/tex] to solve for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{2 (d - v_0 t)}{t^2} \][/tex]
Thus, the correct sequence is:
1. [tex]\( d - v_0 t = \frac{1}{2} a t^2 \)[/tex]
2. [tex]\( 2 (d - v_0 t) = a t^2 \)[/tex]
3. [tex]\( a = \frac{2 (d - v_0 t)}{t^2} \)[/tex]
Step 1: Subtract [tex]\( v_0 t \)[/tex] from both sides to isolate the term with [tex]\( a \)[/tex]:
[tex]\[ d - v_0 t = \frac{1}{2} a t^2 \][/tex]
Step 2: Multiply both sides by 2 to eliminate the fraction:
[tex]\[ 2 (d - v_0 t) = a t^2 \][/tex]
Step 3: Divide both sides by [tex]\( t^2 \)[/tex] to solve for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{2 (d - v_0 t)}{t^2} \][/tex]
Thus, the correct sequence is:
1. [tex]\( d - v_0 t = \frac{1}{2} a t^2 \)[/tex]
2. [tex]\( 2 (d - v_0 t) = a t^2 \)[/tex]
3. [tex]\( a = \frac{2 (d - v_0 t)}{t^2} \)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.