Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve this problem step-by-step.
### Step 1: Calculate the distance between the points
The endpoints of the diameter of the sphere are given as:
[tex]\[ \text{Point 1}: (4, 7, 10) \][/tex]
[tex]\[ \text{Point 2}: (-3, 5, -1) \][/tex]
The formula to calculate the distance [tex]\( d \)[/tex] between two points [tex]\((x_1, y_1, z_1)\)[/tex] and [tex]\((x_2, y_2, z_2)\)[/tex] in 3-dimensional space is:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \][/tex]
By substituting the coordinates of the given points, we have:
[tex]\[ d = \sqrt{(-3 - 4)^2 + (5 - 7)^2 + (-1 - 10)^2} \][/tex]
Calculating the individual differences:
[tex]\[ \begin{align*} x_2 - x_1 & = -3 - 4 = -7 \\ y_2 - y_1 & = 5 - 7 = -2 \\ z_2 - z_1 & = -1 - 10 = -11 \end{align*} \][/tex]
Now, squaring these differences:
[tex]\[ \begin{align*} (-7)^2 & = 49 \\ (-2)^2 & = 4 \\ (-11)^2 & = 121 \end{align*} \][/tex]
Summing these squared values and taking the square root:
[tex]\[ d = \sqrt{49 + 4 + 121} = \sqrt{174} \approx 13.19090595827292 \][/tex]
Thus, the diameter of the sphere is approximately [tex]\(13.19090595827292\)[/tex].
### Step 2: Calculate the radius
The radius [tex]\( r \)[/tex] of the sphere is half of the diameter:
[tex]\[ r = \frac{d}{2} = \frac{13.19090595827292}{2} \approx 6.59545297913646 \][/tex]
Therefore, the radius of the sphere is approximately [tex]\(6.59545297913646\)[/tex].
### Step 3: Calculate the coordinates of the center of the sphere
The center of the sphere is the midpoint of the diameter's endpoints. The formula to find the midpoint [tex]\((x_m, y_m, z_m)\)[/tex] between two points [tex]\((x_1, y_1, z_1)\)[/tex] and [tex]\((x_2, y_2, z_2)\)[/tex] is:
[tex]\[ (x_m, y_m, z_m) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right) \][/tex]
By substituting the coordinates of the given points, we have:
[tex]\[ \left(\frac{4 + (-3)}{2}, \frac{7 + 5}{2}, \frac{10 + (-1)}{2}\right) \][/tex]
Calculating the individual midpoints:
[tex]\[ \begin{align*} x_m & = \frac{4 - 3}{2} = \frac{1}{2} = 0.5 \\ y_m & = \frac{7 + 5}{2} = \frac{12}{2} = 6 \\ z_m & = \frac{10 - 1}{2} = \frac{9}{2} = 4.5 \end{align*} \][/tex]
So, the coordinates of the center of the sphere are [tex]\((0.5, 6.0, 4.5)\)[/tex].
### Summary
1. Radius of the sphere: [tex]\( \approx 6.59545297913646 \)[/tex]
2. Coordinates of the center: [tex]\( (0.5, 6.0, 4.5) \)[/tex]
These steps illustrate how the length of the radius and the coordinates of the center are determined.
### Step 1: Calculate the distance between the points
The endpoints of the diameter of the sphere are given as:
[tex]\[ \text{Point 1}: (4, 7, 10) \][/tex]
[tex]\[ \text{Point 2}: (-3, 5, -1) \][/tex]
The formula to calculate the distance [tex]\( d \)[/tex] between two points [tex]\((x_1, y_1, z_1)\)[/tex] and [tex]\((x_2, y_2, z_2)\)[/tex] in 3-dimensional space is:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \][/tex]
By substituting the coordinates of the given points, we have:
[tex]\[ d = \sqrt{(-3 - 4)^2 + (5 - 7)^2 + (-1 - 10)^2} \][/tex]
Calculating the individual differences:
[tex]\[ \begin{align*} x_2 - x_1 & = -3 - 4 = -7 \\ y_2 - y_1 & = 5 - 7 = -2 \\ z_2 - z_1 & = -1 - 10 = -11 \end{align*} \][/tex]
Now, squaring these differences:
[tex]\[ \begin{align*} (-7)^2 & = 49 \\ (-2)^2 & = 4 \\ (-11)^2 & = 121 \end{align*} \][/tex]
Summing these squared values and taking the square root:
[tex]\[ d = \sqrt{49 + 4 + 121} = \sqrt{174} \approx 13.19090595827292 \][/tex]
Thus, the diameter of the sphere is approximately [tex]\(13.19090595827292\)[/tex].
### Step 2: Calculate the radius
The radius [tex]\( r \)[/tex] of the sphere is half of the diameter:
[tex]\[ r = \frac{d}{2} = \frac{13.19090595827292}{2} \approx 6.59545297913646 \][/tex]
Therefore, the radius of the sphere is approximately [tex]\(6.59545297913646\)[/tex].
### Step 3: Calculate the coordinates of the center of the sphere
The center of the sphere is the midpoint of the diameter's endpoints. The formula to find the midpoint [tex]\((x_m, y_m, z_m)\)[/tex] between two points [tex]\((x_1, y_1, z_1)\)[/tex] and [tex]\((x_2, y_2, z_2)\)[/tex] is:
[tex]\[ (x_m, y_m, z_m) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right) \][/tex]
By substituting the coordinates of the given points, we have:
[tex]\[ \left(\frac{4 + (-3)}{2}, \frac{7 + 5}{2}, \frac{10 + (-1)}{2}\right) \][/tex]
Calculating the individual midpoints:
[tex]\[ \begin{align*} x_m & = \frac{4 - 3}{2} = \frac{1}{2} = 0.5 \\ y_m & = \frac{7 + 5}{2} = \frac{12}{2} = 6 \\ z_m & = \frac{10 - 1}{2} = \frac{9}{2} = 4.5 \end{align*} \][/tex]
So, the coordinates of the center of the sphere are [tex]\((0.5, 6.0, 4.5)\)[/tex].
### Summary
1. Radius of the sphere: [tex]\( \approx 6.59545297913646 \)[/tex]
2. Coordinates of the center: [tex]\( (0.5, 6.0, 4.5) \)[/tex]
These steps illustrate how the length of the radius and the coordinates of the center are determined.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.