Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Find the value of [tex]\(\frac{a}{b}\)[/tex] if [tex]\(\frac{8a + 5b}{8a - 5b} = \frac{7}{3}\)[/tex].

Sagot :

To find the value of [tex]\(\frac{a}{b}\)[/tex] given the equation

[tex]\[ \frac{8a + 5b}{8a - 5b} = \frac{7}{3}, \][/tex]

we will follow these steps:

1. Cross-multiply to eliminate the fraction:
[tex]\[ 3 \cdot (8a + 5b) = 7 \cdot (8a - 5b). \][/tex]

2. Distribute the multiplication on both sides:
[tex]\[ 3 \cdot 8a + 3 \cdot 5b = 7 \cdot 8a - 7 \cdot 5b, \][/tex]
which simplifies to:
[tex]\[ 24a + 15b = 56a - 35b. \][/tex]

3. Move all terms involving [tex]\(a\)[/tex] to one side and terms involving [tex]\(b\)[/tex] to the other:
[tex]\[ 24a - 56a = -35b - 15b, \][/tex]
which simplifies to:
[tex]\[ -32a = -50b. \][/tex]

4. Divide both sides by [tex]\(-32\)[/tex] to solve for [tex]\(a\)[/tex] in terms of [tex]\(b\)[/tex]:
[tex]\[ a = \frac{-50}{-32} b. \][/tex]

5. Simplify the fraction [tex]\(\frac{-50}{-32}\)[/tex]:
[tex]\[ a = \frac{50}{32} b \][/tex]
[tex]\[ a = \frac{25}{16} b. \][/tex]

6. From the above relation, we can write:
[tex]\[ \frac{a}{b} = \frac{25}{16}. \][/tex]

Therefore, the value of [tex]\(\frac{a}{b}\)[/tex] is

[tex]\[ 1.5625. \][/tex]