Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To evaluate the expression [tex]\(-\frac{2}{5} + \frac{1}{40}\)[/tex] and write the answer in its simplest form, follow these steps:
1. Convert the fractions to have a common denominator:
- The denominators are 5 and 40.
- Find the least common multiple (LCM) of 5 and 40. The LCM is 40.
- Rewrite [tex]\(-\frac{2}{5}\)[/tex] with the denominator 40.
[tex]\[ -\frac{2}{5} = -\frac{2 \times 8}{5 \times 8} = -\frac{16}{40} \][/tex]
2. Rewrite the expression with a common denominator:
[tex]\[ -\frac{2}{5} + \frac{1}{40} = -\frac{16}{40} + \frac{1}{40} \][/tex]
3. Add the fractions:
- Since the denominators are the same, you can add the numerators directly.
[tex]\[ -\frac{16}{40} + \frac{1}{40} = \frac{-16 + 1}{40} = \frac{-15}{40} \][/tex]
4. Simplify the fraction:
- Find the greatest common divisor (GCD) of 15 and 40. The GCD is 5.
- Divide the numerator and the denominator by their GCD.
[tex]\[ \frac{-15}{40} = \frac{-15 \div 5}{40 \div 5} = \frac{-3}{8} \][/tex]
Therefore, the simplified form of the expression [tex]\(-\frac{2}{5} + \frac{1}{40}\)[/tex] is [tex]\(\frac{-3}{8}\)[/tex].
1. Convert the fractions to have a common denominator:
- The denominators are 5 and 40.
- Find the least common multiple (LCM) of 5 and 40. The LCM is 40.
- Rewrite [tex]\(-\frac{2}{5}\)[/tex] with the denominator 40.
[tex]\[ -\frac{2}{5} = -\frac{2 \times 8}{5 \times 8} = -\frac{16}{40} \][/tex]
2. Rewrite the expression with a common denominator:
[tex]\[ -\frac{2}{5} + \frac{1}{40} = -\frac{16}{40} + \frac{1}{40} \][/tex]
3. Add the fractions:
- Since the denominators are the same, you can add the numerators directly.
[tex]\[ -\frac{16}{40} + \frac{1}{40} = \frac{-16 + 1}{40} = \frac{-15}{40} \][/tex]
4. Simplify the fraction:
- Find the greatest common divisor (GCD) of 15 and 40. The GCD is 5.
- Divide the numerator and the denominator by their GCD.
[tex]\[ \frac{-15}{40} = \frac{-15 \div 5}{40 \div 5} = \frac{-3}{8} \][/tex]
Therefore, the simplified form of the expression [tex]\(-\frac{2}{5} + \frac{1}{40}\)[/tex] is [tex]\(\frac{-3}{8}\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.