Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! To expand [tex]\( f(x, y) = e^{xy} \)[/tex] as a Taylor series around the point [tex]\( (1, i) \)[/tex] up to and including the first degree terms, we need to follow these steps:
1. Evaluate the function at the point [tex]\( (1, i) \)[/tex]:
[tex]\[ f(1, i) = e^{1 \cdot i} = e^i \][/tex]
By Euler's formula, [tex]\( e^i = \cos(1) + i \sin(1) \)[/tex].
2. Compute the partial derivatives of [tex]\( f(x, y) \)[/tex]:
- First partial derivative with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{\partial f}{\partial x} = y e^{xy} \][/tex]
- Evaluating at [tex]\( (1, i) \)[/tex]:
[tex]\[ \left. \frac{\partial f}{\partial x} \right|_{(1, i)} = i e^i = i (\cos(1) + i \sin(1)) = i \cos(1) - \sin(1) \][/tex]
- First partial derivative with respect to [tex]\( y \)[/tex]:
[tex]\[ \frac{\partial f}{\partial y} = x e^{xy} \][/tex]
- Evaluating at [tex]\( (1, i) \)[/tex]:
[tex]\[ \left. \frac{\partial f}{\partial y} \right|_{(1, i)} = 1 \cdot e^i = e^i = \cos(1) + i \sin(1) \][/tex]
3. Construct the Taylor series expansion up to the first degree terms:
The Taylor series expansion of a function [tex]\( f(x, y) \)[/tex] around a point [tex]\( (a, b) \)[/tex] up to the first degree terms is given by:
[tex]\[ f(x, y) \approx f(a, b) + \left. \frac{\partial f}{\partial x} \right|_{(a, b)} (x - a) + \left. \frac{\partial f}{\partial y} \right|_{(a, b)} (y - b) \][/tex]
Substituting [tex]\( (a, b) = (1, i) \)[/tex], we get:
[tex]\[ f(x, y) \approx e^i + \left( i \cos(1) - \sin(1) \right)(x - 1) + \left( \cos(1) + i \sin(1) \right)(y - i) \][/tex]
4. Simplify the expression:
Combining all terms, the Taylor series expansion of [tex]\( e^{xy} \)[/tex] around [tex]\( (1, i) \)[/tex] up to the first degree is:
[tex]\[ e^{xy} \approx e^i + \left( i \cos(1) - \sin(1) \right)(x - 1) + \left( \cos(1) + i \sin(1) \right)(y - i) \][/tex]
By substituting the complex value [tex]\( e^i \)[/tex], [tex]\( i \cos(1) - \sin(1) \)[/tex], and [tex]\( \cos(1) + i \sin(1) \)[/tex] into the series, the expression remains straightforward yet combines the results yielding the final Taylor expansion around point [tex]\( (1, i) \)[/tex]:
[tex]\[ e^{xy} \approx (\cos(1) + i \sin(1)) + \left( i \cos(1) - \sin(1) \right)(x - 1) + \left( \cos(1) + i \sin(1) \right)(y - i) \][/tex]
This gives you a complete first-degree Taylor expansion of the function [tex]\( e^{xy} \)[/tex] around the point [tex]\( (1, i) \)[/tex].
1. Evaluate the function at the point [tex]\( (1, i) \)[/tex]:
[tex]\[ f(1, i) = e^{1 \cdot i} = e^i \][/tex]
By Euler's formula, [tex]\( e^i = \cos(1) + i \sin(1) \)[/tex].
2. Compute the partial derivatives of [tex]\( f(x, y) \)[/tex]:
- First partial derivative with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{\partial f}{\partial x} = y e^{xy} \][/tex]
- Evaluating at [tex]\( (1, i) \)[/tex]:
[tex]\[ \left. \frac{\partial f}{\partial x} \right|_{(1, i)} = i e^i = i (\cos(1) + i \sin(1)) = i \cos(1) - \sin(1) \][/tex]
- First partial derivative with respect to [tex]\( y \)[/tex]:
[tex]\[ \frac{\partial f}{\partial y} = x e^{xy} \][/tex]
- Evaluating at [tex]\( (1, i) \)[/tex]:
[tex]\[ \left. \frac{\partial f}{\partial y} \right|_{(1, i)} = 1 \cdot e^i = e^i = \cos(1) + i \sin(1) \][/tex]
3. Construct the Taylor series expansion up to the first degree terms:
The Taylor series expansion of a function [tex]\( f(x, y) \)[/tex] around a point [tex]\( (a, b) \)[/tex] up to the first degree terms is given by:
[tex]\[ f(x, y) \approx f(a, b) + \left. \frac{\partial f}{\partial x} \right|_{(a, b)} (x - a) + \left. \frac{\partial f}{\partial y} \right|_{(a, b)} (y - b) \][/tex]
Substituting [tex]\( (a, b) = (1, i) \)[/tex], we get:
[tex]\[ f(x, y) \approx e^i + \left( i \cos(1) - \sin(1) \right)(x - 1) + \left( \cos(1) + i \sin(1) \right)(y - i) \][/tex]
4. Simplify the expression:
Combining all terms, the Taylor series expansion of [tex]\( e^{xy} \)[/tex] around [tex]\( (1, i) \)[/tex] up to the first degree is:
[tex]\[ e^{xy} \approx e^i + \left( i \cos(1) - \sin(1) \right)(x - 1) + \left( \cos(1) + i \sin(1) \right)(y - i) \][/tex]
By substituting the complex value [tex]\( e^i \)[/tex], [tex]\( i \cos(1) - \sin(1) \)[/tex], and [tex]\( \cos(1) + i \sin(1) \)[/tex] into the series, the expression remains straightforward yet combines the results yielding the final Taylor expansion around point [tex]\( (1, i) \)[/tex]:
[tex]\[ e^{xy} \approx (\cos(1) + i \sin(1)) + \left( i \cos(1) - \sin(1) \right)(x - 1) + \left( \cos(1) + i \sin(1) \right)(y - i) \][/tex]
This gives you a complete first-degree Taylor expansion of the function [tex]\( e^{xy} \)[/tex] around the point [tex]\( (1, i) \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.