Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Expand [tex]\( f(x, y) = e^{xy} \)[/tex] in Taylor's series at [tex]\( (1, i) \)[/tex] up to the first degree term.

Sagot :

Certainly! To expand [tex]\( f(x, y) = e^{xy} \)[/tex] as a Taylor series around the point [tex]\( (1, i) \)[/tex] up to and including the first degree terms, we need to follow these steps:

1. Evaluate the function at the point [tex]\( (1, i) \)[/tex]:
[tex]\[ f(1, i) = e^{1 \cdot i} = e^i \][/tex]
By Euler's formula, [tex]\( e^i = \cos(1) + i \sin(1) \)[/tex].

2. Compute the partial derivatives of [tex]\( f(x, y) \)[/tex]:

- First partial derivative with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{\partial f}{\partial x} = y e^{xy} \][/tex]

- Evaluating at [tex]\( (1, i) \)[/tex]:
[tex]\[ \left. \frac{\partial f}{\partial x} \right|_{(1, i)} = i e^i = i (\cos(1) + i \sin(1)) = i \cos(1) - \sin(1) \][/tex]

- First partial derivative with respect to [tex]\( y \)[/tex]:
[tex]\[ \frac{\partial f}{\partial y} = x e^{xy} \][/tex]

- Evaluating at [tex]\( (1, i) \)[/tex]:
[tex]\[ \left. \frac{\partial f}{\partial y} \right|_{(1, i)} = 1 \cdot e^i = e^i = \cos(1) + i \sin(1) \][/tex]

3. Construct the Taylor series expansion up to the first degree terms:

The Taylor series expansion of a function [tex]\( f(x, y) \)[/tex] around a point [tex]\( (a, b) \)[/tex] up to the first degree terms is given by:
[tex]\[ f(x, y) \approx f(a, b) + \left. \frac{\partial f}{\partial x} \right|_{(a, b)} (x - a) + \left. \frac{\partial f}{\partial y} \right|_{(a, b)} (y - b) \][/tex]

Substituting [tex]\( (a, b) = (1, i) \)[/tex], we get:
[tex]\[ f(x, y) \approx e^i + \left( i \cos(1) - \sin(1) \right)(x - 1) + \left( \cos(1) + i \sin(1) \right)(y - i) \][/tex]

4. Simplify the expression:

Combining all terms, the Taylor series expansion of [tex]\( e^{xy} \)[/tex] around [tex]\( (1, i) \)[/tex] up to the first degree is:
[tex]\[ e^{xy} \approx e^i + \left( i \cos(1) - \sin(1) \right)(x - 1) + \left( \cos(1) + i \sin(1) \right)(y - i) \][/tex]

By substituting the complex value [tex]\( e^i \)[/tex], [tex]\( i \cos(1) - \sin(1) \)[/tex], and [tex]\( \cos(1) + i \sin(1) \)[/tex] into the series, the expression remains straightforward yet combines the results yielding the final Taylor expansion around point [tex]\( (1, i) \)[/tex]:

[tex]\[ e^{xy} \approx (\cos(1) + i \sin(1)) + \left( i \cos(1) - \sin(1) \right)(x - 1) + \left( \cos(1) + i \sin(1) \right)(y - i) \][/tex]

This gives you a complete first-degree Taylor expansion of the function [tex]\( e^{xy} \)[/tex] around the point [tex]\( (1, i) \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.