Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's analyze the given explicit formula for the sequence:
[tex]\[ f(n) = 70(-2)^{n-1} \][/tex]
We want to convert this explicit formula into a recursive formula, which means expressing [tex]\( f(n) \)[/tex] in terms of [tex]\( f(n-1) \)[/tex].
First, let's observe the pattern:
- The first term [tex]\( f(1) \)[/tex] when [tex]\( n = 1 \)[/tex] is:
[tex]\[ f(1) = 70(-2)^{1-1} = 70(-2)^0 = 70 \cdot 1 = 70 \][/tex]
- The second term [tex]\( f(2) \)[/tex] when [tex]\( n = 2 \)[/tex] is:
[tex]\[ f(2) = 70(-2)^{2-1} = 70(-2)^1 = 70 \cdot (-2) = -140 \][/tex]
- The third term [tex]\( f(3) \)[/tex] when [tex]\( n = 3 \)[/tex] is:
[tex]\[ f(3) = 70(-2)^{3-1} = 70(-2)^2 = 70 \cdot 4 = 280 \][/tex]
- The fourth term [tex]\( f(4) \)[/tex] when [tex]\( n = 4 \)[/tex] is:
[tex]\[ f(4) = 70(-2)^{4-1} = 70(-2)^3 = 70 \cdot (-8) = -560 \][/tex]
Now, let's analyze the relationship between consecutive terms. We notice that:
[tex]\[ \begin{aligned} f(2) &= -2 \cdot f(1) & = -2 \cdot 70 & = -140 \\ f(3) &= -2 \cdot f(2) & = -2 \cdot (-140) & = 280 \\ f(4) &= -2 \cdot f(3) & = -2 \cdot 280 & = -560 \end{aligned} \][/tex]
Therefore, we can see a clear pattern where each term is obtained by multiplying the previous term by -2.
Thus, the recursive formula for [tex]\( n > 1 \)[/tex] is:
[tex]\[ \begin{aligned} f(1) &= 70 \\ f(n) &= -2 \cdot f(n-1) \quad \text{for} \quad n > 1 \end{aligned} \][/tex]
From the given choices, the correct recursive formula is:
[tex]\[ f(n) = -2 \cdot f(n-1) \quad \text{for} \quad n > 1 \][/tex]
Hence, the correct answer is:
[tex]\[ f(n) = -2 f(n-1) \][/tex]
[tex]\[ f(n) = 70(-2)^{n-1} \][/tex]
We want to convert this explicit formula into a recursive formula, which means expressing [tex]\( f(n) \)[/tex] in terms of [tex]\( f(n-1) \)[/tex].
First, let's observe the pattern:
- The first term [tex]\( f(1) \)[/tex] when [tex]\( n = 1 \)[/tex] is:
[tex]\[ f(1) = 70(-2)^{1-1} = 70(-2)^0 = 70 \cdot 1 = 70 \][/tex]
- The second term [tex]\( f(2) \)[/tex] when [tex]\( n = 2 \)[/tex] is:
[tex]\[ f(2) = 70(-2)^{2-1} = 70(-2)^1 = 70 \cdot (-2) = -140 \][/tex]
- The third term [tex]\( f(3) \)[/tex] when [tex]\( n = 3 \)[/tex] is:
[tex]\[ f(3) = 70(-2)^{3-1} = 70(-2)^2 = 70 \cdot 4 = 280 \][/tex]
- The fourth term [tex]\( f(4) \)[/tex] when [tex]\( n = 4 \)[/tex] is:
[tex]\[ f(4) = 70(-2)^{4-1} = 70(-2)^3 = 70 \cdot (-8) = -560 \][/tex]
Now, let's analyze the relationship between consecutive terms. We notice that:
[tex]\[ \begin{aligned} f(2) &= -2 \cdot f(1) & = -2 \cdot 70 & = -140 \\ f(3) &= -2 \cdot f(2) & = -2 \cdot (-140) & = 280 \\ f(4) &= -2 \cdot f(3) & = -2 \cdot 280 & = -560 \end{aligned} \][/tex]
Therefore, we can see a clear pattern where each term is obtained by multiplying the previous term by -2.
Thus, the recursive formula for [tex]\( n > 1 \)[/tex] is:
[tex]\[ \begin{aligned} f(1) &= 70 \\ f(n) &= -2 \cdot f(n-1) \quad \text{for} \quad n > 1 \end{aligned} \][/tex]
From the given choices, the correct recursive formula is:
[tex]\[ f(n) = -2 \cdot f(n-1) \quad \text{for} \quad n > 1 \][/tex]
Hence, the correct answer is:
[tex]\[ f(n) = -2 f(n-1) \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.