Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The problem states that the sum of two rational numbers is [tex]\(-8\)[/tex] and one of the numbers is [tex]\(\frac{-15}{7}\)[/tex]. We need to find the other number. Here’s the step-by-step solution:
1. Identify the total sum and known number:
- The total sum of the two numbers is [tex]\(-8\)[/tex].
- The given number is [tex]\(\frac{-15}{7}\)[/tex].
2. Set up the equation:
Let's denote the unknown number as [tex]\(x\)[/tex].
According to the problem, we have:
[tex]\[ \left( \frac{-15}{7} \right) + x = -8 \][/tex]
3. Isolate [tex]\(x\)[/tex]:
To find [tex]\(x\)[/tex], we move [tex]\(\frac{-15}{7}\)[/tex] to the other side of the equation by adding [tex]\(\frac{15}{7}\)[/tex] to both sides:
[tex]\[ x = -8 - \left( \frac{-15}{7} \right) \][/tex]
4. Combine the terms:
Convert [tex]\(-8\)[/tex] to a fraction with a common denominator to simplify the calculation:
[tex]\[ -8 = \frac{-8 \times 7}{7} = \frac{-56}{7} \][/tex]
Now we can write the equation as:
[tex]\[ x = \frac{-56}{7} + \frac{15}{7} \][/tex]
5. Simplify the fractions:
Since the denominators are the same, we can combine the numerators:
[tex]\[ x = \frac{-56 + 15}{7} = \frac{-41}{7} \][/tex]
6. Convert to a decimal (if necessary):
The fraction [tex]\(\frac{-41}{7}\)[/tex] can be converted to a decimal for clarity:
[tex]\[ x = -5.857142857142857 \][/tex]
Therefore, the other number is [tex]\(\frac{-41}{7}\)[/tex] or approximately [tex]\(-5.857142857142857\)[/tex].
Recap:
- One number is [tex]\(\frac{-15}{7}\)[/tex].
- The other number is [tex]\(\frac{-41}{7}\)[/tex] or [tex]\(-5.857142857142857\)[/tex].
- When these numbers are added, their sum is [tex]\(-8\)[/tex].
1. Identify the total sum and known number:
- The total sum of the two numbers is [tex]\(-8\)[/tex].
- The given number is [tex]\(\frac{-15}{7}\)[/tex].
2. Set up the equation:
Let's denote the unknown number as [tex]\(x\)[/tex].
According to the problem, we have:
[tex]\[ \left( \frac{-15}{7} \right) + x = -8 \][/tex]
3. Isolate [tex]\(x\)[/tex]:
To find [tex]\(x\)[/tex], we move [tex]\(\frac{-15}{7}\)[/tex] to the other side of the equation by adding [tex]\(\frac{15}{7}\)[/tex] to both sides:
[tex]\[ x = -8 - \left( \frac{-15}{7} \right) \][/tex]
4. Combine the terms:
Convert [tex]\(-8\)[/tex] to a fraction with a common denominator to simplify the calculation:
[tex]\[ -8 = \frac{-8 \times 7}{7} = \frac{-56}{7} \][/tex]
Now we can write the equation as:
[tex]\[ x = \frac{-56}{7} + \frac{15}{7} \][/tex]
5. Simplify the fractions:
Since the denominators are the same, we can combine the numerators:
[tex]\[ x = \frac{-56 + 15}{7} = \frac{-41}{7} \][/tex]
6. Convert to a decimal (if necessary):
The fraction [tex]\(\frac{-41}{7}\)[/tex] can be converted to a decimal for clarity:
[tex]\[ x = -5.857142857142857 \][/tex]
Therefore, the other number is [tex]\(\frac{-41}{7}\)[/tex] or approximately [tex]\(-5.857142857142857\)[/tex].
Recap:
- One number is [tex]\(\frac{-15}{7}\)[/tex].
- The other number is [tex]\(\frac{-41}{7}\)[/tex] or [tex]\(-5.857142857142857\)[/tex].
- When these numbers are added, their sum is [tex]\(-8\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.