Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
The problem states that the sum of two rational numbers is [tex]\(-8\)[/tex] and one of the numbers is [tex]\(\frac{-15}{7}\)[/tex]. We need to find the other number. Here’s the step-by-step solution:
1. Identify the total sum and known number:
- The total sum of the two numbers is [tex]\(-8\)[/tex].
- The given number is [tex]\(\frac{-15}{7}\)[/tex].
2. Set up the equation:
Let's denote the unknown number as [tex]\(x\)[/tex].
According to the problem, we have:
[tex]\[ \left( \frac{-15}{7} \right) + x = -8 \][/tex]
3. Isolate [tex]\(x\)[/tex]:
To find [tex]\(x\)[/tex], we move [tex]\(\frac{-15}{7}\)[/tex] to the other side of the equation by adding [tex]\(\frac{15}{7}\)[/tex] to both sides:
[tex]\[ x = -8 - \left( \frac{-15}{7} \right) \][/tex]
4. Combine the terms:
Convert [tex]\(-8\)[/tex] to a fraction with a common denominator to simplify the calculation:
[tex]\[ -8 = \frac{-8 \times 7}{7} = \frac{-56}{7} \][/tex]
Now we can write the equation as:
[tex]\[ x = \frac{-56}{7} + \frac{15}{7} \][/tex]
5. Simplify the fractions:
Since the denominators are the same, we can combine the numerators:
[tex]\[ x = \frac{-56 + 15}{7} = \frac{-41}{7} \][/tex]
6. Convert to a decimal (if necessary):
The fraction [tex]\(\frac{-41}{7}\)[/tex] can be converted to a decimal for clarity:
[tex]\[ x = -5.857142857142857 \][/tex]
Therefore, the other number is [tex]\(\frac{-41}{7}\)[/tex] or approximately [tex]\(-5.857142857142857\)[/tex].
Recap:
- One number is [tex]\(\frac{-15}{7}\)[/tex].
- The other number is [tex]\(\frac{-41}{7}\)[/tex] or [tex]\(-5.857142857142857\)[/tex].
- When these numbers are added, their sum is [tex]\(-8\)[/tex].
1. Identify the total sum and known number:
- The total sum of the two numbers is [tex]\(-8\)[/tex].
- The given number is [tex]\(\frac{-15}{7}\)[/tex].
2. Set up the equation:
Let's denote the unknown number as [tex]\(x\)[/tex].
According to the problem, we have:
[tex]\[ \left( \frac{-15}{7} \right) + x = -8 \][/tex]
3. Isolate [tex]\(x\)[/tex]:
To find [tex]\(x\)[/tex], we move [tex]\(\frac{-15}{7}\)[/tex] to the other side of the equation by adding [tex]\(\frac{15}{7}\)[/tex] to both sides:
[tex]\[ x = -8 - \left( \frac{-15}{7} \right) \][/tex]
4. Combine the terms:
Convert [tex]\(-8\)[/tex] to a fraction with a common denominator to simplify the calculation:
[tex]\[ -8 = \frac{-8 \times 7}{7} = \frac{-56}{7} \][/tex]
Now we can write the equation as:
[tex]\[ x = \frac{-56}{7} + \frac{15}{7} \][/tex]
5. Simplify the fractions:
Since the denominators are the same, we can combine the numerators:
[tex]\[ x = \frac{-56 + 15}{7} = \frac{-41}{7} \][/tex]
6. Convert to a decimal (if necessary):
The fraction [tex]\(\frac{-41}{7}\)[/tex] can be converted to a decimal for clarity:
[tex]\[ x = -5.857142857142857 \][/tex]
Therefore, the other number is [tex]\(\frac{-41}{7}\)[/tex] or approximately [tex]\(-5.857142857142857\)[/tex].
Recap:
- One number is [tex]\(\frac{-15}{7}\)[/tex].
- The other number is [tex]\(\frac{-41}{7}\)[/tex] or [tex]\(-5.857142857142857\)[/tex].
- When these numbers are added, their sum is [tex]\(-8\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.