Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Write each polynomial in standard form.

[tex]\( 2x^2 + x^3 - 3 + 4x^5 \)[/tex]


Sagot :

To write the polynomial [tex]\( 2 x^2 + x^3 - 3 + 4 x^5 \)[/tex] in standard form, follow these steps:

1. Identify the terms: The given polynomial consists of the following terms:
- [tex]\( 2x^2 \)[/tex]
- [tex]\( x^3 \)[/tex]
- [tex]\(-3\)[/tex]
- [tex]\( 4x^5 \)[/tex]

2. Rewrite the polynomial: Write down the terms explicitly:
- [tex]\( 2x^2 \)[/tex] is a term with [tex]\( x \)[/tex] raised to the power of 2.
- [tex]\( x^3 \)[/tex] is a term with [tex]\( x \)[/tex] raised to the power of 3.
- [tex]\(-3\)[/tex] is a constant term, with no [tex]\( x \)[/tex].
- [tex]\( 4x^5 \)[/tex] is a term with [tex]\( x \)[/tex] raised to the power of 5.

3. Arrange the terms in descending order of their exponents: To place the polynomial in standard form, list the terms from the highest exponent to the lowest:
- The highest exponent term here is [tex]\( 4x^5 \)[/tex], which comes first.
- The next highest exponent is [tex]\( x^3 \)[/tex], which comes second.
- Followed by [tex]\( 2x^2 \)[/tex], which comes third.
- Finally, the constant term [tex]\(-3\)[/tex] comes last.

4. Write the polynomial in standard form:
Combining the terms in descending order of their exponents, we get:
[tex]\[ 4x^5 + x^3 + 2x^2 - 3 \][/tex]

Therefore, the polynomial [tex]\( 2 x^2 + x^3 - 3 + 4 x^5 \)[/tex] in standard form is:
[tex]\[ 4x^5 + x^3 + 2x^2 - 3 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.