At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To write the polynomial [tex]\( 2 x^2 + x^3 - 3 + 4 x^5 \)[/tex] in standard form, follow these steps:
1. Identify the terms: The given polynomial consists of the following terms:
- [tex]\( 2x^2 \)[/tex]
- [tex]\( x^3 \)[/tex]
- [tex]\(-3\)[/tex]
- [tex]\( 4x^5 \)[/tex]
2. Rewrite the polynomial: Write down the terms explicitly:
- [tex]\( 2x^2 \)[/tex] is a term with [tex]\( x \)[/tex] raised to the power of 2.
- [tex]\( x^3 \)[/tex] is a term with [tex]\( x \)[/tex] raised to the power of 3.
- [tex]\(-3\)[/tex] is a constant term, with no [tex]\( x \)[/tex].
- [tex]\( 4x^5 \)[/tex] is a term with [tex]\( x \)[/tex] raised to the power of 5.
3. Arrange the terms in descending order of their exponents: To place the polynomial in standard form, list the terms from the highest exponent to the lowest:
- The highest exponent term here is [tex]\( 4x^5 \)[/tex], which comes first.
- The next highest exponent is [tex]\( x^3 \)[/tex], which comes second.
- Followed by [tex]\( 2x^2 \)[/tex], which comes third.
- Finally, the constant term [tex]\(-3\)[/tex] comes last.
4. Write the polynomial in standard form:
Combining the terms in descending order of their exponents, we get:
[tex]\[ 4x^5 + x^3 + 2x^2 - 3 \][/tex]
Therefore, the polynomial [tex]\( 2 x^2 + x^3 - 3 + 4 x^5 \)[/tex] in standard form is:
[tex]\[ 4x^5 + x^3 + 2x^2 - 3 \][/tex]
1. Identify the terms: The given polynomial consists of the following terms:
- [tex]\( 2x^2 \)[/tex]
- [tex]\( x^3 \)[/tex]
- [tex]\(-3\)[/tex]
- [tex]\( 4x^5 \)[/tex]
2. Rewrite the polynomial: Write down the terms explicitly:
- [tex]\( 2x^2 \)[/tex] is a term with [tex]\( x \)[/tex] raised to the power of 2.
- [tex]\( x^3 \)[/tex] is a term with [tex]\( x \)[/tex] raised to the power of 3.
- [tex]\(-3\)[/tex] is a constant term, with no [tex]\( x \)[/tex].
- [tex]\( 4x^5 \)[/tex] is a term with [tex]\( x \)[/tex] raised to the power of 5.
3. Arrange the terms in descending order of their exponents: To place the polynomial in standard form, list the terms from the highest exponent to the lowest:
- The highest exponent term here is [tex]\( 4x^5 \)[/tex], which comes first.
- The next highest exponent is [tex]\( x^3 \)[/tex], which comes second.
- Followed by [tex]\( 2x^2 \)[/tex], which comes third.
- Finally, the constant term [tex]\(-3\)[/tex] comes last.
4. Write the polynomial in standard form:
Combining the terms in descending order of their exponents, we get:
[tex]\[ 4x^5 + x^3 + 2x^2 - 3 \][/tex]
Therefore, the polynomial [tex]\( 2 x^2 + x^3 - 3 + 4 x^5 \)[/tex] in standard form is:
[tex]\[ 4x^5 + x^3 + 2x^2 - 3 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.