Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's solve this step-by-step.
Given:
[tex]\[ \tan \theta=\frac{1}{7} \][/tex]
[tex]\[ \tan \beta=\frac{1}{3} \][/tex]
To find [tex]\(\cos 2\theta\)[/tex] and [tex]\(\sin 4\beta\)[/tex], we will use trigonometric identities.
1. Finding [tex]\(\cos 2\theta\)[/tex]:
The double-angle identity for cosine is:
[tex]\[ \cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \][/tex]
Substituting [tex]\(\tan \theta = \frac{1}{7}\)[/tex]:
[tex]\[ \cos 2\theta = \frac{1 - \left(\frac{1}{7}\right)^2}{1 + \left(\frac{1}{7}\right)^2} \][/tex]
[tex]\[ \cos 2\theta = \frac{1 - \frac{1}{49}}{1 + \frac{1}{49}} \][/tex]
[tex]\[ \cos 2\theta = \frac{\frac{49}{49} - \frac{1}{49}}{\frac{49}{49} + \frac{1}{49}} \][/tex]
[tex]\[ \cos 2\theta = \frac{\frac{48}{49}}{\frac{50}{49}} \][/tex]
[tex]\[ \cos 2\theta = \frac{48}{50} \][/tex]
[tex]\[ \cos 2\theta = 0.96 \][/tex]
2. Finding [tex]\(\sin 4\beta\)[/tex]:
The multiple-angle identity for sine is:
[tex]\[ \sin 4\beta = 2 \sin 2\beta \cos 2\beta \][/tex]
First, we need [tex]\(\sin 2\beta\)[/tex] and [tex]\(\cos 2\beta\)[/tex]. The double-angle formulas for sine and cosine are:
[tex]\[ \sin 2\beta = \frac{2 \tan \beta}{1 + \tan^2 \beta} \][/tex]
[tex]\[ \cos 2\beta = \frac{1 - \tan^2 \beta}{1 + \tan^2 \beta} \][/tex]
Substituting [tex]\(\tan \beta = \frac{1}{3} \)[/tex]:
[tex]\[ \sin 2\beta = \frac{2 \left(\frac{1}{3}\right)}{1 + \left(\frac{1}{3}\right)^2} \][/tex]
[tex]\[ \sin 2\beta = \frac{\frac{2}{3}}{1 + \frac{1}{9}} \][/tex]
[tex]\[ \sin 2\beta = \frac{\frac{2}{3}}{\frac{10}{9}} \][/tex]
[tex]\[ \sin 2\beta = \frac{2}{3} \cdot \frac{9}{10} \][/tex]
[tex]\[ \sin 2\beta = \frac{18}{30} \][/tex]
[tex]\[ \sin 2\beta = \frac{3}{5} \][/tex]
[tex]\[ \cos 2\beta = \frac{1 - \left(\frac{1}{3}\right)^2}{1 + \left(\frac{1}{3}\right)^2} \][/tex]
[tex]\[ \cos 2\beta = \frac{1 - \frac{1}{9}}{1 + \frac{1}{9}} \][/tex]
[tex]\[ \cos 2\beta = \frac{\frac{9}{9} - \frac{1}{9}}{\frac{9}{9} + \frac{1}{9}} \][/tex]
[tex]\[ \cos 2\beta = \frac{\frac{8}{9}}{\frac{10}{9}} \][/tex]
[tex]\[ \cos 2\beta = \frac{8}{10} \][/tex]
[tex]\[ \cos 2\beta = 0.8 \][/tex]
Now, using these results in the equation for [tex]\(\sin 4\beta\)[/tex]:
[tex]\[ \sin 4\beta = 2 \left(\frac{3}{5}\right) \left(0.8\right) \][/tex]
[tex]\[ \sin 4\beta = 2 \left(\frac{3 \times 8}{5 \times 10}\right) \][/tex]
[tex]\[ \sin 4\beta = 2 \left(\frac{24}{50}\right) \][/tex]
[tex]\[ \sin 4\beta = \frac{48}{50} \][/tex]
[tex]\[ \sin 4\beta = 0.96 \][/tex]
Thus, we have shown that:
[tex]\[ \cos 2\theta = \sin 4\beta \][/tex]
[tex]\[ 0.96 = 0.96 \][/tex]
Hence, [tex]\(\boxed{\cos 2 \theta = \sin 4 \beta}\)[/tex].
Given:
[tex]\[ \tan \theta=\frac{1}{7} \][/tex]
[tex]\[ \tan \beta=\frac{1}{3} \][/tex]
To find [tex]\(\cos 2\theta\)[/tex] and [tex]\(\sin 4\beta\)[/tex], we will use trigonometric identities.
1. Finding [tex]\(\cos 2\theta\)[/tex]:
The double-angle identity for cosine is:
[tex]\[ \cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \][/tex]
Substituting [tex]\(\tan \theta = \frac{1}{7}\)[/tex]:
[tex]\[ \cos 2\theta = \frac{1 - \left(\frac{1}{7}\right)^2}{1 + \left(\frac{1}{7}\right)^2} \][/tex]
[tex]\[ \cos 2\theta = \frac{1 - \frac{1}{49}}{1 + \frac{1}{49}} \][/tex]
[tex]\[ \cos 2\theta = \frac{\frac{49}{49} - \frac{1}{49}}{\frac{49}{49} + \frac{1}{49}} \][/tex]
[tex]\[ \cos 2\theta = \frac{\frac{48}{49}}{\frac{50}{49}} \][/tex]
[tex]\[ \cos 2\theta = \frac{48}{50} \][/tex]
[tex]\[ \cos 2\theta = 0.96 \][/tex]
2. Finding [tex]\(\sin 4\beta\)[/tex]:
The multiple-angle identity for sine is:
[tex]\[ \sin 4\beta = 2 \sin 2\beta \cos 2\beta \][/tex]
First, we need [tex]\(\sin 2\beta\)[/tex] and [tex]\(\cos 2\beta\)[/tex]. The double-angle formulas for sine and cosine are:
[tex]\[ \sin 2\beta = \frac{2 \tan \beta}{1 + \tan^2 \beta} \][/tex]
[tex]\[ \cos 2\beta = \frac{1 - \tan^2 \beta}{1 + \tan^2 \beta} \][/tex]
Substituting [tex]\(\tan \beta = \frac{1}{3} \)[/tex]:
[tex]\[ \sin 2\beta = \frac{2 \left(\frac{1}{3}\right)}{1 + \left(\frac{1}{3}\right)^2} \][/tex]
[tex]\[ \sin 2\beta = \frac{\frac{2}{3}}{1 + \frac{1}{9}} \][/tex]
[tex]\[ \sin 2\beta = \frac{\frac{2}{3}}{\frac{10}{9}} \][/tex]
[tex]\[ \sin 2\beta = \frac{2}{3} \cdot \frac{9}{10} \][/tex]
[tex]\[ \sin 2\beta = \frac{18}{30} \][/tex]
[tex]\[ \sin 2\beta = \frac{3}{5} \][/tex]
[tex]\[ \cos 2\beta = \frac{1 - \left(\frac{1}{3}\right)^2}{1 + \left(\frac{1}{3}\right)^2} \][/tex]
[tex]\[ \cos 2\beta = \frac{1 - \frac{1}{9}}{1 + \frac{1}{9}} \][/tex]
[tex]\[ \cos 2\beta = \frac{\frac{9}{9} - \frac{1}{9}}{\frac{9}{9} + \frac{1}{9}} \][/tex]
[tex]\[ \cos 2\beta = \frac{\frac{8}{9}}{\frac{10}{9}} \][/tex]
[tex]\[ \cos 2\beta = \frac{8}{10} \][/tex]
[tex]\[ \cos 2\beta = 0.8 \][/tex]
Now, using these results in the equation for [tex]\(\sin 4\beta\)[/tex]:
[tex]\[ \sin 4\beta = 2 \left(\frac{3}{5}\right) \left(0.8\right) \][/tex]
[tex]\[ \sin 4\beta = 2 \left(\frac{3 \times 8}{5 \times 10}\right) \][/tex]
[tex]\[ \sin 4\beta = 2 \left(\frac{24}{50}\right) \][/tex]
[tex]\[ \sin 4\beta = \frac{48}{50} \][/tex]
[tex]\[ \sin 4\beta = 0.96 \][/tex]
Thus, we have shown that:
[tex]\[ \cos 2\theta = \sin 4\beta \][/tex]
[tex]\[ 0.96 = 0.96 \][/tex]
Hence, [tex]\(\boxed{\cos 2 \theta = \sin 4 \beta}\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.