At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve this step-by-step.
Given:
[tex]\[ \tan \theta=\frac{1}{7} \][/tex]
[tex]\[ \tan \beta=\frac{1}{3} \][/tex]
To find [tex]\(\cos 2\theta\)[/tex] and [tex]\(\sin 4\beta\)[/tex], we will use trigonometric identities.
1. Finding [tex]\(\cos 2\theta\)[/tex]:
The double-angle identity for cosine is:
[tex]\[ \cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \][/tex]
Substituting [tex]\(\tan \theta = \frac{1}{7}\)[/tex]:
[tex]\[ \cos 2\theta = \frac{1 - \left(\frac{1}{7}\right)^2}{1 + \left(\frac{1}{7}\right)^2} \][/tex]
[tex]\[ \cos 2\theta = \frac{1 - \frac{1}{49}}{1 + \frac{1}{49}} \][/tex]
[tex]\[ \cos 2\theta = \frac{\frac{49}{49} - \frac{1}{49}}{\frac{49}{49} + \frac{1}{49}} \][/tex]
[tex]\[ \cos 2\theta = \frac{\frac{48}{49}}{\frac{50}{49}} \][/tex]
[tex]\[ \cos 2\theta = \frac{48}{50} \][/tex]
[tex]\[ \cos 2\theta = 0.96 \][/tex]
2. Finding [tex]\(\sin 4\beta\)[/tex]:
The multiple-angle identity for sine is:
[tex]\[ \sin 4\beta = 2 \sin 2\beta \cos 2\beta \][/tex]
First, we need [tex]\(\sin 2\beta\)[/tex] and [tex]\(\cos 2\beta\)[/tex]. The double-angle formulas for sine and cosine are:
[tex]\[ \sin 2\beta = \frac{2 \tan \beta}{1 + \tan^2 \beta} \][/tex]
[tex]\[ \cos 2\beta = \frac{1 - \tan^2 \beta}{1 + \tan^2 \beta} \][/tex]
Substituting [tex]\(\tan \beta = \frac{1}{3} \)[/tex]:
[tex]\[ \sin 2\beta = \frac{2 \left(\frac{1}{3}\right)}{1 + \left(\frac{1}{3}\right)^2} \][/tex]
[tex]\[ \sin 2\beta = \frac{\frac{2}{3}}{1 + \frac{1}{9}} \][/tex]
[tex]\[ \sin 2\beta = \frac{\frac{2}{3}}{\frac{10}{9}} \][/tex]
[tex]\[ \sin 2\beta = \frac{2}{3} \cdot \frac{9}{10} \][/tex]
[tex]\[ \sin 2\beta = \frac{18}{30} \][/tex]
[tex]\[ \sin 2\beta = \frac{3}{5} \][/tex]
[tex]\[ \cos 2\beta = \frac{1 - \left(\frac{1}{3}\right)^2}{1 + \left(\frac{1}{3}\right)^2} \][/tex]
[tex]\[ \cos 2\beta = \frac{1 - \frac{1}{9}}{1 + \frac{1}{9}} \][/tex]
[tex]\[ \cos 2\beta = \frac{\frac{9}{9} - \frac{1}{9}}{\frac{9}{9} + \frac{1}{9}} \][/tex]
[tex]\[ \cos 2\beta = \frac{\frac{8}{9}}{\frac{10}{9}} \][/tex]
[tex]\[ \cos 2\beta = \frac{8}{10} \][/tex]
[tex]\[ \cos 2\beta = 0.8 \][/tex]
Now, using these results in the equation for [tex]\(\sin 4\beta\)[/tex]:
[tex]\[ \sin 4\beta = 2 \left(\frac{3}{5}\right) \left(0.8\right) \][/tex]
[tex]\[ \sin 4\beta = 2 \left(\frac{3 \times 8}{5 \times 10}\right) \][/tex]
[tex]\[ \sin 4\beta = 2 \left(\frac{24}{50}\right) \][/tex]
[tex]\[ \sin 4\beta = \frac{48}{50} \][/tex]
[tex]\[ \sin 4\beta = 0.96 \][/tex]
Thus, we have shown that:
[tex]\[ \cos 2\theta = \sin 4\beta \][/tex]
[tex]\[ 0.96 = 0.96 \][/tex]
Hence, [tex]\(\boxed{\cos 2 \theta = \sin 4 \beta}\)[/tex].
Given:
[tex]\[ \tan \theta=\frac{1}{7} \][/tex]
[tex]\[ \tan \beta=\frac{1}{3} \][/tex]
To find [tex]\(\cos 2\theta\)[/tex] and [tex]\(\sin 4\beta\)[/tex], we will use trigonometric identities.
1. Finding [tex]\(\cos 2\theta\)[/tex]:
The double-angle identity for cosine is:
[tex]\[ \cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \][/tex]
Substituting [tex]\(\tan \theta = \frac{1}{7}\)[/tex]:
[tex]\[ \cos 2\theta = \frac{1 - \left(\frac{1}{7}\right)^2}{1 + \left(\frac{1}{7}\right)^2} \][/tex]
[tex]\[ \cos 2\theta = \frac{1 - \frac{1}{49}}{1 + \frac{1}{49}} \][/tex]
[tex]\[ \cos 2\theta = \frac{\frac{49}{49} - \frac{1}{49}}{\frac{49}{49} + \frac{1}{49}} \][/tex]
[tex]\[ \cos 2\theta = \frac{\frac{48}{49}}{\frac{50}{49}} \][/tex]
[tex]\[ \cos 2\theta = \frac{48}{50} \][/tex]
[tex]\[ \cos 2\theta = 0.96 \][/tex]
2. Finding [tex]\(\sin 4\beta\)[/tex]:
The multiple-angle identity for sine is:
[tex]\[ \sin 4\beta = 2 \sin 2\beta \cos 2\beta \][/tex]
First, we need [tex]\(\sin 2\beta\)[/tex] and [tex]\(\cos 2\beta\)[/tex]. The double-angle formulas for sine and cosine are:
[tex]\[ \sin 2\beta = \frac{2 \tan \beta}{1 + \tan^2 \beta} \][/tex]
[tex]\[ \cos 2\beta = \frac{1 - \tan^2 \beta}{1 + \tan^2 \beta} \][/tex]
Substituting [tex]\(\tan \beta = \frac{1}{3} \)[/tex]:
[tex]\[ \sin 2\beta = \frac{2 \left(\frac{1}{3}\right)}{1 + \left(\frac{1}{3}\right)^2} \][/tex]
[tex]\[ \sin 2\beta = \frac{\frac{2}{3}}{1 + \frac{1}{9}} \][/tex]
[tex]\[ \sin 2\beta = \frac{\frac{2}{3}}{\frac{10}{9}} \][/tex]
[tex]\[ \sin 2\beta = \frac{2}{3} \cdot \frac{9}{10} \][/tex]
[tex]\[ \sin 2\beta = \frac{18}{30} \][/tex]
[tex]\[ \sin 2\beta = \frac{3}{5} \][/tex]
[tex]\[ \cos 2\beta = \frac{1 - \left(\frac{1}{3}\right)^2}{1 + \left(\frac{1}{3}\right)^2} \][/tex]
[tex]\[ \cos 2\beta = \frac{1 - \frac{1}{9}}{1 + \frac{1}{9}} \][/tex]
[tex]\[ \cos 2\beta = \frac{\frac{9}{9} - \frac{1}{9}}{\frac{9}{9} + \frac{1}{9}} \][/tex]
[tex]\[ \cos 2\beta = \frac{\frac{8}{9}}{\frac{10}{9}} \][/tex]
[tex]\[ \cos 2\beta = \frac{8}{10} \][/tex]
[tex]\[ \cos 2\beta = 0.8 \][/tex]
Now, using these results in the equation for [tex]\(\sin 4\beta\)[/tex]:
[tex]\[ \sin 4\beta = 2 \left(\frac{3}{5}\right) \left(0.8\right) \][/tex]
[tex]\[ \sin 4\beta = 2 \left(\frac{3 \times 8}{5 \times 10}\right) \][/tex]
[tex]\[ \sin 4\beta = 2 \left(\frac{24}{50}\right) \][/tex]
[tex]\[ \sin 4\beta = \frac{48}{50} \][/tex]
[tex]\[ \sin 4\beta = 0.96 \][/tex]
Thus, we have shown that:
[tex]\[ \cos 2\theta = \sin 4\beta \][/tex]
[tex]\[ 0.96 = 0.96 \][/tex]
Hence, [tex]\(\boxed{\cos 2 \theta = \sin 4 \beta}\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.