Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To verify whether [tex]\( f(x) = \frac{1}{3} \)[/tex] for [tex]\( 0 \leq x \leq 3 \)[/tex] and [tex]\( f(x) = 0 \)[/tex] otherwise is a probability density function (pdf), we need to check two essential conditions:
1. Non-negativity: The function [tex]\( f(x) \)[/tex] must be non-negative for all values of [tex]\( x \)[/tex].
2. Normalization: The total integral of [tex]\( f(x) \)[/tex] over the entire range must be equal to 1.
### Step 1: Non-negativity
We need to ensure [tex]\( f(x) \geq 0 \)[/tex] for all [tex]\( x \)[/tex].
- For [tex]\( 0 \leq x \leq 3 \)[/tex], [tex]\( f(x) = \frac{1}{3} \)[/tex]. Since [tex]\(\frac{1}{3} \)[/tex] is a positive number, [tex]\( f(x) \geq 0 \)[/tex] in this interval.
- For [tex]\( x < 0 \)[/tex] or [tex]\( x > 3 \)[/tex], [tex]\( f(x) = 0 \)[/tex] which is also non-negative.
Thus, [tex]\( f(x) \geq 0 \)[/tex] for all [tex]\( x \)[/tex].
### Step 2: Normalization
We need to check if the total integral of [tex]\( f(x) \)[/tex] over the entire range equals 1.
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = 1 \][/tex]
Splitting the integral into the defined ranges of [tex]\( f(x) \)[/tex], we have:
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{0} f(x) \, dx + \int_{0}^{3} f(x) \, dx + \int_{3}^{\infty} f(x) \, dx \][/tex]
Since [tex]\( f(x) = 0 \)[/tex] for [tex]\( x < 0 \)[/tex] and [tex]\( x > 3 \)[/tex], these integrals will be zero:
[tex]\[ \int_{-\infty}^{0} f(x) \, dx = 0 \][/tex]
[tex]\[ \int_{3}^{\infty} f(x) \, dx = 0 \][/tex]
So we are left with:
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{3} f(x) \, dx \][/tex]
For [tex]\( 0 \leq x \leq 3 \)[/tex], [tex]\( f(x) = \frac{1}{3} \)[/tex], thus:
[tex]\[ \int_{0}^{3} f(x) \, dx = \int_{0}^{3} \frac{1}{3} \, dx \][/tex]
Evaluating this integral:
[tex]\[ \int_{0}^{3} \frac{1}{3} \, dx = \frac{1}{3} \times (3 - 0) = \frac{1}{3} \times 3 = 1 \][/tex]
Since the integral over the entire range equals 1, the normalization condition is satisfied.
### Conclusion
Since [tex]\( f(x) \)[/tex] is non-negative for all [tex]\( x \)[/tex] and its integral over the entire range is equal to 1, [tex]\( f(x) \)[/tex] satisfies the conditions to be a probability density function.
Therefore, [tex]\( f(x) = \frac{1}{3} \)[/tex] for [tex]\( 0 \leq x \leq 3 \)[/tex] and [tex]\( f(x) = 0 \)[/tex] otherwise is indeed a probability density function. The validation shows that the total area under the curve [tex]\( f(x) \)[/tex] is 1, confirming that it can represent a valid pdf.
1. Non-negativity: The function [tex]\( f(x) \)[/tex] must be non-negative for all values of [tex]\( x \)[/tex].
2. Normalization: The total integral of [tex]\( f(x) \)[/tex] over the entire range must be equal to 1.
### Step 1: Non-negativity
We need to ensure [tex]\( f(x) \geq 0 \)[/tex] for all [tex]\( x \)[/tex].
- For [tex]\( 0 \leq x \leq 3 \)[/tex], [tex]\( f(x) = \frac{1}{3} \)[/tex]. Since [tex]\(\frac{1}{3} \)[/tex] is a positive number, [tex]\( f(x) \geq 0 \)[/tex] in this interval.
- For [tex]\( x < 0 \)[/tex] or [tex]\( x > 3 \)[/tex], [tex]\( f(x) = 0 \)[/tex] which is also non-negative.
Thus, [tex]\( f(x) \geq 0 \)[/tex] for all [tex]\( x \)[/tex].
### Step 2: Normalization
We need to check if the total integral of [tex]\( f(x) \)[/tex] over the entire range equals 1.
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = 1 \][/tex]
Splitting the integral into the defined ranges of [tex]\( f(x) \)[/tex], we have:
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{0} f(x) \, dx + \int_{0}^{3} f(x) \, dx + \int_{3}^{\infty} f(x) \, dx \][/tex]
Since [tex]\( f(x) = 0 \)[/tex] for [tex]\( x < 0 \)[/tex] and [tex]\( x > 3 \)[/tex], these integrals will be zero:
[tex]\[ \int_{-\infty}^{0} f(x) \, dx = 0 \][/tex]
[tex]\[ \int_{3}^{\infty} f(x) \, dx = 0 \][/tex]
So we are left with:
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{3} f(x) \, dx \][/tex]
For [tex]\( 0 \leq x \leq 3 \)[/tex], [tex]\( f(x) = \frac{1}{3} \)[/tex], thus:
[tex]\[ \int_{0}^{3} f(x) \, dx = \int_{0}^{3} \frac{1}{3} \, dx \][/tex]
Evaluating this integral:
[tex]\[ \int_{0}^{3} \frac{1}{3} \, dx = \frac{1}{3} \times (3 - 0) = \frac{1}{3} \times 3 = 1 \][/tex]
Since the integral over the entire range equals 1, the normalization condition is satisfied.
### Conclusion
Since [tex]\( f(x) \)[/tex] is non-negative for all [tex]\( x \)[/tex] and its integral over the entire range is equal to 1, [tex]\( f(x) \)[/tex] satisfies the conditions to be a probability density function.
Therefore, [tex]\( f(x) = \frac{1}{3} \)[/tex] for [tex]\( 0 \leq x \leq 3 \)[/tex] and [tex]\( f(x) = 0 \)[/tex] otherwise is indeed a probability density function. The validation shows that the total area under the curve [tex]\( f(x) \)[/tex] is 1, confirming that it can represent a valid pdf.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.