Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To verify whether [tex]\( f(x) = \frac{1}{3} \)[/tex] for [tex]\( 0 \leq x \leq 3 \)[/tex] and [tex]\( f(x) = 0 \)[/tex] otherwise is a probability density function (pdf), we need to check two essential conditions:
1. Non-negativity: The function [tex]\( f(x) \)[/tex] must be non-negative for all values of [tex]\( x \)[/tex].
2. Normalization: The total integral of [tex]\( f(x) \)[/tex] over the entire range must be equal to 1.
### Step 1: Non-negativity
We need to ensure [tex]\( f(x) \geq 0 \)[/tex] for all [tex]\( x \)[/tex].
- For [tex]\( 0 \leq x \leq 3 \)[/tex], [tex]\( f(x) = \frac{1}{3} \)[/tex]. Since [tex]\(\frac{1}{3} \)[/tex] is a positive number, [tex]\( f(x) \geq 0 \)[/tex] in this interval.
- For [tex]\( x < 0 \)[/tex] or [tex]\( x > 3 \)[/tex], [tex]\( f(x) = 0 \)[/tex] which is also non-negative.
Thus, [tex]\( f(x) \geq 0 \)[/tex] for all [tex]\( x \)[/tex].
### Step 2: Normalization
We need to check if the total integral of [tex]\( f(x) \)[/tex] over the entire range equals 1.
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = 1 \][/tex]
Splitting the integral into the defined ranges of [tex]\( f(x) \)[/tex], we have:
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{0} f(x) \, dx + \int_{0}^{3} f(x) \, dx + \int_{3}^{\infty} f(x) \, dx \][/tex]
Since [tex]\( f(x) = 0 \)[/tex] for [tex]\( x < 0 \)[/tex] and [tex]\( x > 3 \)[/tex], these integrals will be zero:
[tex]\[ \int_{-\infty}^{0} f(x) \, dx = 0 \][/tex]
[tex]\[ \int_{3}^{\infty} f(x) \, dx = 0 \][/tex]
So we are left with:
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{3} f(x) \, dx \][/tex]
For [tex]\( 0 \leq x \leq 3 \)[/tex], [tex]\( f(x) = \frac{1}{3} \)[/tex], thus:
[tex]\[ \int_{0}^{3} f(x) \, dx = \int_{0}^{3} \frac{1}{3} \, dx \][/tex]
Evaluating this integral:
[tex]\[ \int_{0}^{3} \frac{1}{3} \, dx = \frac{1}{3} \times (3 - 0) = \frac{1}{3} \times 3 = 1 \][/tex]
Since the integral over the entire range equals 1, the normalization condition is satisfied.
### Conclusion
Since [tex]\( f(x) \)[/tex] is non-negative for all [tex]\( x \)[/tex] and its integral over the entire range is equal to 1, [tex]\( f(x) \)[/tex] satisfies the conditions to be a probability density function.
Therefore, [tex]\( f(x) = \frac{1}{3} \)[/tex] for [tex]\( 0 \leq x \leq 3 \)[/tex] and [tex]\( f(x) = 0 \)[/tex] otherwise is indeed a probability density function. The validation shows that the total area under the curve [tex]\( f(x) \)[/tex] is 1, confirming that it can represent a valid pdf.
1. Non-negativity: The function [tex]\( f(x) \)[/tex] must be non-negative for all values of [tex]\( x \)[/tex].
2. Normalization: The total integral of [tex]\( f(x) \)[/tex] over the entire range must be equal to 1.
### Step 1: Non-negativity
We need to ensure [tex]\( f(x) \geq 0 \)[/tex] for all [tex]\( x \)[/tex].
- For [tex]\( 0 \leq x \leq 3 \)[/tex], [tex]\( f(x) = \frac{1}{3} \)[/tex]. Since [tex]\(\frac{1}{3} \)[/tex] is a positive number, [tex]\( f(x) \geq 0 \)[/tex] in this interval.
- For [tex]\( x < 0 \)[/tex] or [tex]\( x > 3 \)[/tex], [tex]\( f(x) = 0 \)[/tex] which is also non-negative.
Thus, [tex]\( f(x) \geq 0 \)[/tex] for all [tex]\( x \)[/tex].
### Step 2: Normalization
We need to check if the total integral of [tex]\( f(x) \)[/tex] over the entire range equals 1.
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = 1 \][/tex]
Splitting the integral into the defined ranges of [tex]\( f(x) \)[/tex], we have:
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{0} f(x) \, dx + \int_{0}^{3} f(x) \, dx + \int_{3}^{\infty} f(x) \, dx \][/tex]
Since [tex]\( f(x) = 0 \)[/tex] for [tex]\( x < 0 \)[/tex] and [tex]\( x > 3 \)[/tex], these integrals will be zero:
[tex]\[ \int_{-\infty}^{0} f(x) \, dx = 0 \][/tex]
[tex]\[ \int_{3}^{\infty} f(x) \, dx = 0 \][/tex]
So we are left with:
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{3} f(x) \, dx \][/tex]
For [tex]\( 0 \leq x \leq 3 \)[/tex], [tex]\( f(x) = \frac{1}{3} \)[/tex], thus:
[tex]\[ \int_{0}^{3} f(x) \, dx = \int_{0}^{3} \frac{1}{3} \, dx \][/tex]
Evaluating this integral:
[tex]\[ \int_{0}^{3} \frac{1}{3} \, dx = \frac{1}{3} \times (3 - 0) = \frac{1}{3} \times 3 = 1 \][/tex]
Since the integral over the entire range equals 1, the normalization condition is satisfied.
### Conclusion
Since [tex]\( f(x) \)[/tex] is non-negative for all [tex]\( x \)[/tex] and its integral over the entire range is equal to 1, [tex]\( f(x) \)[/tex] satisfies the conditions to be a probability density function.
Therefore, [tex]\( f(x) = \frac{1}{3} \)[/tex] for [tex]\( 0 \leq x \leq 3 \)[/tex] and [tex]\( f(x) = 0 \)[/tex] otherwise is indeed a probability density function. The validation shows that the total area under the curve [tex]\( f(x) \)[/tex] is 1, confirming that it can represent a valid pdf.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.