Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To verify whether [tex]\( f(x) = \frac{1}{3} \)[/tex] for [tex]\( 0 \leq x \leq 3 \)[/tex] and [tex]\( f(x) = 0 \)[/tex] otherwise is a probability density function (pdf), we need to check two essential conditions:
1. Non-negativity: The function [tex]\( f(x) \)[/tex] must be non-negative for all values of [tex]\( x \)[/tex].
2. Normalization: The total integral of [tex]\( f(x) \)[/tex] over the entire range must be equal to 1.
### Step 1: Non-negativity
We need to ensure [tex]\( f(x) \geq 0 \)[/tex] for all [tex]\( x \)[/tex].
- For [tex]\( 0 \leq x \leq 3 \)[/tex], [tex]\( f(x) = \frac{1}{3} \)[/tex]. Since [tex]\(\frac{1}{3} \)[/tex] is a positive number, [tex]\( f(x) \geq 0 \)[/tex] in this interval.
- For [tex]\( x < 0 \)[/tex] or [tex]\( x > 3 \)[/tex], [tex]\( f(x) = 0 \)[/tex] which is also non-negative.
Thus, [tex]\( f(x) \geq 0 \)[/tex] for all [tex]\( x \)[/tex].
### Step 2: Normalization
We need to check if the total integral of [tex]\( f(x) \)[/tex] over the entire range equals 1.
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = 1 \][/tex]
Splitting the integral into the defined ranges of [tex]\( f(x) \)[/tex], we have:
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{0} f(x) \, dx + \int_{0}^{3} f(x) \, dx + \int_{3}^{\infty} f(x) \, dx \][/tex]
Since [tex]\( f(x) = 0 \)[/tex] for [tex]\( x < 0 \)[/tex] and [tex]\( x > 3 \)[/tex], these integrals will be zero:
[tex]\[ \int_{-\infty}^{0} f(x) \, dx = 0 \][/tex]
[tex]\[ \int_{3}^{\infty} f(x) \, dx = 0 \][/tex]
So we are left with:
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{3} f(x) \, dx \][/tex]
For [tex]\( 0 \leq x \leq 3 \)[/tex], [tex]\( f(x) = \frac{1}{3} \)[/tex], thus:
[tex]\[ \int_{0}^{3} f(x) \, dx = \int_{0}^{3} \frac{1}{3} \, dx \][/tex]
Evaluating this integral:
[tex]\[ \int_{0}^{3} \frac{1}{3} \, dx = \frac{1}{3} \times (3 - 0) = \frac{1}{3} \times 3 = 1 \][/tex]
Since the integral over the entire range equals 1, the normalization condition is satisfied.
### Conclusion
Since [tex]\( f(x) \)[/tex] is non-negative for all [tex]\( x \)[/tex] and its integral over the entire range is equal to 1, [tex]\( f(x) \)[/tex] satisfies the conditions to be a probability density function.
Therefore, [tex]\( f(x) = \frac{1}{3} \)[/tex] for [tex]\( 0 \leq x \leq 3 \)[/tex] and [tex]\( f(x) = 0 \)[/tex] otherwise is indeed a probability density function. The validation shows that the total area under the curve [tex]\( f(x) \)[/tex] is 1, confirming that it can represent a valid pdf.
1. Non-negativity: The function [tex]\( f(x) \)[/tex] must be non-negative for all values of [tex]\( x \)[/tex].
2. Normalization: The total integral of [tex]\( f(x) \)[/tex] over the entire range must be equal to 1.
### Step 1: Non-negativity
We need to ensure [tex]\( f(x) \geq 0 \)[/tex] for all [tex]\( x \)[/tex].
- For [tex]\( 0 \leq x \leq 3 \)[/tex], [tex]\( f(x) = \frac{1}{3} \)[/tex]. Since [tex]\(\frac{1}{3} \)[/tex] is a positive number, [tex]\( f(x) \geq 0 \)[/tex] in this interval.
- For [tex]\( x < 0 \)[/tex] or [tex]\( x > 3 \)[/tex], [tex]\( f(x) = 0 \)[/tex] which is also non-negative.
Thus, [tex]\( f(x) \geq 0 \)[/tex] for all [tex]\( x \)[/tex].
### Step 2: Normalization
We need to check if the total integral of [tex]\( f(x) \)[/tex] over the entire range equals 1.
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = 1 \][/tex]
Splitting the integral into the defined ranges of [tex]\( f(x) \)[/tex], we have:
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{0} f(x) \, dx + \int_{0}^{3} f(x) \, dx + \int_{3}^{\infty} f(x) \, dx \][/tex]
Since [tex]\( f(x) = 0 \)[/tex] for [tex]\( x < 0 \)[/tex] and [tex]\( x > 3 \)[/tex], these integrals will be zero:
[tex]\[ \int_{-\infty}^{0} f(x) \, dx = 0 \][/tex]
[tex]\[ \int_{3}^{\infty} f(x) \, dx = 0 \][/tex]
So we are left with:
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{3} f(x) \, dx \][/tex]
For [tex]\( 0 \leq x \leq 3 \)[/tex], [tex]\( f(x) = \frac{1}{3} \)[/tex], thus:
[tex]\[ \int_{0}^{3} f(x) \, dx = \int_{0}^{3} \frac{1}{3} \, dx \][/tex]
Evaluating this integral:
[tex]\[ \int_{0}^{3} \frac{1}{3} \, dx = \frac{1}{3} \times (3 - 0) = \frac{1}{3} \times 3 = 1 \][/tex]
Since the integral over the entire range equals 1, the normalization condition is satisfied.
### Conclusion
Since [tex]\( f(x) \)[/tex] is non-negative for all [tex]\( x \)[/tex] and its integral over the entire range is equal to 1, [tex]\( f(x) \)[/tex] satisfies the conditions to be a probability density function.
Therefore, [tex]\( f(x) = \frac{1}{3} \)[/tex] for [tex]\( 0 \leq x \leq 3 \)[/tex] and [tex]\( f(x) = 0 \)[/tex] otherwise is indeed a probability density function. The validation shows that the total area under the curve [tex]\( f(x) \)[/tex] is 1, confirming that it can represent a valid pdf.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.