Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the total mass of [tex]\( \text{KNO}_3 \)[/tex] that must be dissolved in 50.0 grams of [tex]\( \text{H}_2O \)[/tex] at [tex]\( 60^{\circ} \text{C} \)[/tex] to make a saturated solution, follow these steps:
1. Identify the given solubility information: We are provided with the solubility of [tex]\( \text{KNO}_3 \)[/tex] at [tex]\( 60^{\circ} \text{C} \)[/tex], which is 106 grams per 100 grams of water.
2. Interpret the solubility: This means that 106 grams of [tex]\( \text{KNO}_3 \)[/tex] can dissolve in 100 grams of water at [tex]\( 60^{\circ} \text{C} \)[/tex].
3. Scale down the solubility to the given amount of water: Since we only have 50.0 grams of [tex]\( \text{H}_2O \)[/tex], which is half of 100 grams, the amount of [tex]\( \text{KNO}_3 \)[/tex] that can be dissolved will also be half of 106 grams.
4. Calculate the mass of [tex]\( \text{KNO}_3 \)[/tex] that will dissolve:
[tex]\[ \text{Mass of } \text{KNO}_3 = \left( \frac{106 \, \text{grams}}{100 \, \text{grams of water}} \right) \times 50.0 \, \text{grams of water} \][/tex]
Simplifying this calculation:
[tex]\[ \text{Mass of } \text{KNO}_3 = 53.0 \, \text{grams} \][/tex]
Thus, the total mass of [tex]\( \text{KNO}_3 \)[/tex] that must be dissolved in 50.0 grams of [tex]\( \text{H}_2O \)[/tex] at [tex]\( 60^{\circ} \text{C} \)[/tex] to make a saturated solution is [tex]\( \boxed{53 \, \text{grams}} \)[/tex].
1. Identify the given solubility information: We are provided with the solubility of [tex]\( \text{KNO}_3 \)[/tex] at [tex]\( 60^{\circ} \text{C} \)[/tex], which is 106 grams per 100 grams of water.
2. Interpret the solubility: This means that 106 grams of [tex]\( \text{KNO}_3 \)[/tex] can dissolve in 100 grams of water at [tex]\( 60^{\circ} \text{C} \)[/tex].
3. Scale down the solubility to the given amount of water: Since we only have 50.0 grams of [tex]\( \text{H}_2O \)[/tex], which is half of 100 grams, the amount of [tex]\( \text{KNO}_3 \)[/tex] that can be dissolved will also be half of 106 grams.
4. Calculate the mass of [tex]\( \text{KNO}_3 \)[/tex] that will dissolve:
[tex]\[ \text{Mass of } \text{KNO}_3 = \left( \frac{106 \, \text{grams}}{100 \, \text{grams of water}} \right) \times 50.0 \, \text{grams of water} \][/tex]
Simplifying this calculation:
[tex]\[ \text{Mass of } \text{KNO}_3 = 53.0 \, \text{grams} \][/tex]
Thus, the total mass of [tex]\( \text{KNO}_3 \)[/tex] that must be dissolved in 50.0 grams of [tex]\( \text{H}_2O \)[/tex] at [tex]\( 60^{\circ} \text{C} \)[/tex] to make a saturated solution is [tex]\( \boxed{53 \, \text{grams}} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.