Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! Let's go through the detailed steps to find the focal length of the equi-convex lens given the distances:
1. Given Values:
- Distance of the image from the focus, [tex]\( v \)[/tex]: [tex]\( v = 30 \)[/tex] cm.
- Distance of the object from the first focus, [tex]\( u \)[/tex]: [tex]\( u = -30 \)[/tex] cm. (Note the negative sign, as per convention in lens formula, the object distance is taken as negative).
2. Lens Formula:
The lens formula is given by:
[tex]\[ \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \][/tex]
3. Substituting the Values:
Substitute [tex]\( v = 30 \)[/tex] cm and [tex]\( u = -30 \)[/tex] cm into the lens formula:
[tex]\[ \frac{1}{f} = \frac{1}{30} - \left( \frac{1}{-30} \right) \][/tex]
4. Simplifying:
The expression becomes:
[tex]\[ \frac{1}{f} = \frac{1}{30} + \frac{1}{30} = \frac{2}{30} \][/tex]
5. Calculating Focal Length:
Invert the fraction to find [tex]\( f \)[/tex]:
[tex]\[ f = \frac{30}{2} = 15 \text{ cm} \][/tex]
So, the focal length of the lens is [tex]\( \boxed{15 \text{ cm}} \)[/tex].
1. Given Values:
- Distance of the image from the focus, [tex]\( v \)[/tex]: [tex]\( v = 30 \)[/tex] cm.
- Distance of the object from the first focus, [tex]\( u \)[/tex]: [tex]\( u = -30 \)[/tex] cm. (Note the negative sign, as per convention in lens formula, the object distance is taken as negative).
2. Lens Formula:
The lens formula is given by:
[tex]\[ \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \][/tex]
3. Substituting the Values:
Substitute [tex]\( v = 30 \)[/tex] cm and [tex]\( u = -30 \)[/tex] cm into the lens formula:
[tex]\[ \frac{1}{f} = \frac{1}{30} - \left( \frac{1}{-30} \right) \][/tex]
4. Simplifying:
The expression becomes:
[tex]\[ \frac{1}{f} = \frac{1}{30} + \frac{1}{30} = \frac{2}{30} \][/tex]
5. Calculating Focal Length:
Invert the fraction to find [tex]\( f \)[/tex]:
[tex]\[ f = \frac{30}{2} = 15 \text{ cm} \][/tex]
So, the focal length of the lens is [tex]\( \boxed{15 \text{ cm}} \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.