Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

A circle has a radius of 5 ft, and an arc of length 7 ft is made by the intersection of the circle with a central angle. Which equation gives the measure of the central angle, [tex]\( \theta \)[/tex]?

A. [tex]\( \theta = \frac{5}{7} \)[/tex]

B. [tex]\( \theta = \frac{7}{5} \)[/tex]

C. [tex]\( \theta = 7 + 5 \)[/tex]

D. [tex]\( \theta = 7.5 \)[/tex]


Sagot :

To determine the measure of the central angle, [tex]\(\theta\)[/tex], given the radius of the circle and the length of the arc, we can use the relationship between the arc length, the radius, and the central angle in radians. The formula that relates these quantities is:

[tex]\[ \theta = \frac{\text{arc length}}{\text{radius}} \][/tex]

Let's plug in the given values:

- The radius of the circle is [tex]\(5 \, \text{ft}\)[/tex].
- The length of the arc is [tex]\(7 \, \text{ft}\)[/tex].

Using the formula:

[tex]\[ \theta = \frac{7 \, \text{ft}}{5 \, \text{ft}} \][/tex]

This simplifies to:

[tex]\[ \theta = \frac{7}{5} \][/tex]

Therefore, the equation that gives the measure of the central angle, [tex]\(\theta\)[/tex], is:

[tex]\[ \theta = \frac{7}{5} \][/tex]

Thus, the correct option is:

[tex]\[ \theta = \frac{7}{5} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.