At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the problem, let's break it down step-by-step:
1. Initial Setup:
- Assume the initial area of the triangle is 1 (for simplicity).
- Let the initial height of the triangle be [tex]\( h \)[/tex] and the initial base be [tex]\( b \)[/tex].
2. Initial Area:
- The area of a triangle is given by [tex]\( \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \)[/tex].
- So, [tex]\( 1 = \frac{1}{2} \times b \times h \)[/tex].
3. Increase in Height:
- The height is increased by 40%.
- New height [tex]\( h_{\text{new}} = h \times (1 + \frac{40}{100}) = 1.4h \)[/tex].
4. New Area with Original Base:
- Keeping the base [tex]\( b \)[/tex] the same, the new area with the increased height is [tex]\( \text{Area}_{\text{new}} = \frac{1}{2} \times b \times 1.4h \)[/tex].
- Substituting the original area relationship [tex]\( 1 = \frac{1}{2} \times b \times h \)[/tex]:
[tex]\[ 1.4 \times \frac{1}{2} \times b \times h = 1.4 \times 1 = 1.4 \][/tex].
- So the new area with the increased height and same base is 1.4.
5. Maximum Allowed Area:
- The maximum allowed increase in area is 60%.
- Maximum area allowed [tex]\( \text{Area}_{\text{max}} = 1 \times (1 + \frac{60}{100}) = 1.6 \)[/tex].
6. Determine New Base for Maximum Allowed Area:
- To find the proportional increase in the base that keeps the area within the maximum allowed increase:
[tex]\[ 1.6 = \frac{1}{2} \times b_{\text{new}} \times 1.4h \][/tex].
- We know [tex]\( 1 = \frac{1}{2} \times b \times h \)[/tex], hence [tex]\( b_{\text{new}} \times 1.4 \times \frac{1}{2} \times h = 1.6 \times \frac{1}{2} \times b \times h \)[/tex].
- Simplifying the equation:
[tex]\[ b_{\text{new}} \times 1.4 = 1.6 \times b \][/tex].
- Solving for the new base [tex]\( b_{\text{new}} \)[/tex]:
[tex]\[ b_{\text{new}} = \frac{1.6 \times b}{1.4} = \frac{1.6}{1.4} \times b = \frac{8}{7} \times b \][/tex].
7. Calculate the Percentage Increase in the Base:
- The increase in the base is [tex]\( \frac{8}{7} \times b \)[/tex].
- The percentage increase in the base is:
[tex]\[ \left( \frac{\frac{8}{7} \times b - b}{b} \right) \times 100 \% = \left( \frac{8}{7} - 1 \right) \times 100 \% = \left( \frac{1}{7} \right) \times 100 \% = 14.28 \% \][/tex].
So, the maximum percentage increase in the length of the base to restrict the area increase to a maximum of 60% is:
c) 14.28%
1. Initial Setup:
- Assume the initial area of the triangle is 1 (for simplicity).
- Let the initial height of the triangle be [tex]\( h \)[/tex] and the initial base be [tex]\( b \)[/tex].
2. Initial Area:
- The area of a triangle is given by [tex]\( \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \)[/tex].
- So, [tex]\( 1 = \frac{1}{2} \times b \times h \)[/tex].
3. Increase in Height:
- The height is increased by 40%.
- New height [tex]\( h_{\text{new}} = h \times (1 + \frac{40}{100}) = 1.4h \)[/tex].
4. New Area with Original Base:
- Keeping the base [tex]\( b \)[/tex] the same, the new area with the increased height is [tex]\( \text{Area}_{\text{new}} = \frac{1}{2} \times b \times 1.4h \)[/tex].
- Substituting the original area relationship [tex]\( 1 = \frac{1}{2} \times b \times h \)[/tex]:
[tex]\[ 1.4 \times \frac{1}{2} \times b \times h = 1.4 \times 1 = 1.4 \][/tex].
- So the new area with the increased height and same base is 1.4.
5. Maximum Allowed Area:
- The maximum allowed increase in area is 60%.
- Maximum area allowed [tex]\( \text{Area}_{\text{max}} = 1 \times (1 + \frac{60}{100}) = 1.6 \)[/tex].
6. Determine New Base for Maximum Allowed Area:
- To find the proportional increase in the base that keeps the area within the maximum allowed increase:
[tex]\[ 1.6 = \frac{1}{2} \times b_{\text{new}} \times 1.4h \][/tex].
- We know [tex]\( 1 = \frac{1}{2} \times b \times h \)[/tex], hence [tex]\( b_{\text{new}} \times 1.4 \times \frac{1}{2} \times h = 1.6 \times \frac{1}{2} \times b \times h \)[/tex].
- Simplifying the equation:
[tex]\[ b_{\text{new}} \times 1.4 = 1.6 \times b \][/tex].
- Solving for the new base [tex]\( b_{\text{new}} \)[/tex]:
[tex]\[ b_{\text{new}} = \frac{1.6 \times b}{1.4} = \frac{1.6}{1.4} \times b = \frac{8}{7} \times b \][/tex].
7. Calculate the Percentage Increase in the Base:
- The increase in the base is [tex]\( \frac{8}{7} \times b \)[/tex].
- The percentage increase in the base is:
[tex]\[ \left( \frac{\frac{8}{7} \times b - b}{b} \right) \times 100 \% = \left( \frac{8}{7} - 1 \right) \times 100 \% = \left( \frac{1}{7} \right) \times 100 \% = 14.28 \% \][/tex].
So, the maximum percentage increase in the length of the base to restrict the area increase to a maximum of 60% is:
c) 14.28%
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.