Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

The height of a triangle is increased by 40%. What can be the maximum percentage increase in the length of the base so that the increase in area is restricted to a maximum of 60%?

A. 50%
B. 20%
C. 14.28%
D. 25%

Sagot :

To solve the problem, let's break it down step-by-step:

1. Initial Setup:
- Assume the initial area of the triangle is 1 (for simplicity).
- Let the initial height of the triangle be [tex]\( h \)[/tex] and the initial base be [tex]\( b \)[/tex].

2. Initial Area:
- The area of a triangle is given by [tex]\( \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \)[/tex].
- So, [tex]\( 1 = \frac{1}{2} \times b \times h \)[/tex].

3. Increase in Height:
- The height is increased by 40%.
- New height [tex]\( h_{\text{new}} = h \times (1 + \frac{40}{100}) = 1.4h \)[/tex].

4. New Area with Original Base:
- Keeping the base [tex]\( b \)[/tex] the same, the new area with the increased height is [tex]\( \text{Area}_{\text{new}} = \frac{1}{2} \times b \times 1.4h \)[/tex].
- Substituting the original area relationship [tex]\( 1 = \frac{1}{2} \times b \times h \)[/tex]:
[tex]\[ 1.4 \times \frac{1}{2} \times b \times h = 1.4 \times 1 = 1.4 \][/tex].
- So the new area with the increased height and same base is 1.4.

5. Maximum Allowed Area:
- The maximum allowed increase in area is 60%.
- Maximum area allowed [tex]\( \text{Area}_{\text{max}} = 1 \times (1 + \frac{60}{100}) = 1.6 \)[/tex].

6. Determine New Base for Maximum Allowed Area:
- To find the proportional increase in the base that keeps the area within the maximum allowed increase:
[tex]\[ 1.6 = \frac{1}{2} \times b_{\text{new}} \times 1.4h \][/tex].
- We know [tex]\( 1 = \frac{1}{2} \times b \times h \)[/tex], hence [tex]\( b_{\text{new}} \times 1.4 \times \frac{1}{2} \times h = 1.6 \times \frac{1}{2} \times b \times h \)[/tex].
- Simplifying the equation:
[tex]\[ b_{\text{new}} \times 1.4 = 1.6 \times b \][/tex].
- Solving for the new base [tex]\( b_{\text{new}} \)[/tex]:
[tex]\[ b_{\text{new}} = \frac{1.6 \times b}{1.4} = \frac{1.6}{1.4} \times b = \frac{8}{7} \times b \][/tex].

7. Calculate the Percentage Increase in the Base:
- The increase in the base is [tex]\( \frac{8}{7} \times b \)[/tex].
- The percentage increase in the base is:
[tex]\[ \left( \frac{\frac{8}{7} \times b - b}{b} \right) \times 100 \% = \left( \frac{8}{7} - 1 \right) \times 100 \% = \left( \frac{1}{7} \right) \times 100 \% = 14.28 \% \][/tex].

So, the maximum percentage increase in the length of the base to restrict the area increase to a maximum of 60% is:

c) 14.28%
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.