Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To show that if [tex]\( x + y + z = 0 \)[/tex], then [tex]\( x^3 + y^3 + z^3 = 3xyz \)[/tex], let's proceed with the following steps:
### Step 1: Use the Identity for the Sum of Cubes
We start with a well-known algebraic identity for the sum of cubes:
[tex]\[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \][/tex]
### Step 2: Substitute the Given Condition
Given that [tex]\( x + y + z = 0 \)[/tex], we substitute this into the identity:
[tex]\[ x^3 + y^3 + z^3 - 3xyz = (0)(x^2 + y^2 + z^2 - xy - yz - zx) \][/tex]
### Step 3: Simplify the Equation
Since any number multiplied by 0 is 0, the right-hand side of the equation becomes 0:
[tex]\[ x^3 + y^3 + z^3 - 3xyz = 0 \][/tex]
### Step 4: Rearrange to Show the Desired Result
Rearranging the equation, we get:
[tex]\[ x^3 + y^3 + z^3 = 3xyz \][/tex]
### Verification with Example Values
To confirm this identity, let's take specific values of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex] that satisfy [tex]\( x + y + z = 0 \)[/tex]. For instance, let [tex]\( x = 1 \)[/tex], [tex]\( y = -2 \)[/tex], and [tex]\( z = 1 \)[/tex]:
[tex]\[ x + y + z = 1 - 2 + 1 = 0 \][/tex]
This satisfies the given condition. Now, we calculate both sides of the equation:
1. Calculate the left side:
[tex]\[ x^3 + y^3 + z^3 = 1^3 + (-2)^3 + 1^3 = 1 - 8 + 1 = -6 \][/tex]
2. Calculate the right side:
[tex]\[ 3xyz = 3 \cdot 1 \cdot (-2) \cdot 1 = 3 \cdot (-2) = -6 \][/tex]
Both sides of the equation equal [tex]\(-6\)[/tex], confirming that the relation [tex]\( x^3 + y^3 + z^3 = 3xyz \)[/tex] holds true for these values.
Thus, we have shown that if [tex]\( x + y + z = 0 \)[/tex], then [tex]\( x^3 + y^3 + z^3 = 3xyz \)[/tex].
### Step 1: Use the Identity for the Sum of Cubes
We start with a well-known algebraic identity for the sum of cubes:
[tex]\[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \][/tex]
### Step 2: Substitute the Given Condition
Given that [tex]\( x + y + z = 0 \)[/tex], we substitute this into the identity:
[tex]\[ x^3 + y^3 + z^3 - 3xyz = (0)(x^2 + y^2 + z^2 - xy - yz - zx) \][/tex]
### Step 3: Simplify the Equation
Since any number multiplied by 0 is 0, the right-hand side of the equation becomes 0:
[tex]\[ x^3 + y^3 + z^3 - 3xyz = 0 \][/tex]
### Step 4: Rearrange to Show the Desired Result
Rearranging the equation, we get:
[tex]\[ x^3 + y^3 + z^3 = 3xyz \][/tex]
### Verification with Example Values
To confirm this identity, let's take specific values of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex] that satisfy [tex]\( x + y + z = 0 \)[/tex]. For instance, let [tex]\( x = 1 \)[/tex], [tex]\( y = -2 \)[/tex], and [tex]\( z = 1 \)[/tex]:
[tex]\[ x + y + z = 1 - 2 + 1 = 0 \][/tex]
This satisfies the given condition. Now, we calculate both sides of the equation:
1. Calculate the left side:
[tex]\[ x^3 + y^3 + z^3 = 1^3 + (-2)^3 + 1^3 = 1 - 8 + 1 = -6 \][/tex]
2. Calculate the right side:
[tex]\[ 3xyz = 3 \cdot 1 \cdot (-2) \cdot 1 = 3 \cdot (-2) = -6 \][/tex]
Both sides of the equation equal [tex]\(-6\)[/tex], confirming that the relation [tex]\( x^3 + y^3 + z^3 = 3xyz \)[/tex] holds true for these values.
Thus, we have shown that if [tex]\( x + y + z = 0 \)[/tex], then [tex]\( x^3 + y^3 + z^3 = 3xyz \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.