Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the radius of the circle given by the equation [tex]\( x^2 + y^2 + 4x + 8y - 10 = 0 \)[/tex], we need to rewrite the equation in the standard form of a circle, which is [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center and [tex]\(r\)[/tex] is the radius.
### Step-by-Step Solution
1. Group the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms separately:
[tex]\[ x^2 + 4x + y^2 + 8y - 10 = 0 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex] terms:
For [tex]\(x^2 + 4x\)[/tex], we take the coefficient of [tex]\(x\)[/tex], which is 4, divide it by 2 (giving us 2), and then square it (resulting in 4). Add and subtract 4 within the equation:
[tex]\[ x^2 + 4x = (x + 2)^2 - 4 \][/tex]
3. Complete the square for the [tex]\(y\)[/tex] terms:
For [tex]\(y^2 + 8y\)[/tex], we take the coefficient of [tex]\(y\)[/tex], which is 8, divide it by 2 (giving us 4), and then square it (resulting in 16). Add and subtract 16 within the equation:
[tex]\[ y^2 + 8y = (y + 4)^2 - 16 \][/tex]
4. Substitute these completed squares back into the equation:
[tex]\[ (x + 2)^2 - 4 + (y + 4)^2 - 16 - 10 = 0 \][/tex]
5. Combine the constants on the left-hand side and move them to the right-hand side:
[tex]\[ (x + 2)^2 + (y + 4)^2 - 30 = 0 \][/tex]
[tex]\[ (x + 2)^2 + (y + 4)^2 = 30 \][/tex]
6. Identify the standard form of the circle equation:
The given equation [tex]\((x + 2)^2 + (y + 4)^2 = 30\)[/tex] is now in the standard form [tex]\((x - (-2))^2 + (y - (-4))^2 = r^2\)[/tex].
We can see that the radius squared ([tex]\(r^2\)[/tex]) is equal to 30.
7. Find the radius:
[tex]\[ r = \sqrt{30} \][/tex]
8. Round the radius to the nearest thousandth:
[tex]\[ r \approx 5.477 \][/tex]
Therefore, the radius of the circle, rounded to the nearest thousandth, is approximately [tex]\( 5.477 \)[/tex].
### Step-by-Step Solution
1. Group the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms separately:
[tex]\[ x^2 + 4x + y^2 + 8y - 10 = 0 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex] terms:
For [tex]\(x^2 + 4x\)[/tex], we take the coefficient of [tex]\(x\)[/tex], which is 4, divide it by 2 (giving us 2), and then square it (resulting in 4). Add and subtract 4 within the equation:
[tex]\[ x^2 + 4x = (x + 2)^2 - 4 \][/tex]
3. Complete the square for the [tex]\(y\)[/tex] terms:
For [tex]\(y^2 + 8y\)[/tex], we take the coefficient of [tex]\(y\)[/tex], which is 8, divide it by 2 (giving us 4), and then square it (resulting in 16). Add and subtract 16 within the equation:
[tex]\[ y^2 + 8y = (y + 4)^2 - 16 \][/tex]
4. Substitute these completed squares back into the equation:
[tex]\[ (x + 2)^2 - 4 + (y + 4)^2 - 16 - 10 = 0 \][/tex]
5. Combine the constants on the left-hand side and move them to the right-hand side:
[tex]\[ (x + 2)^2 + (y + 4)^2 - 30 = 0 \][/tex]
[tex]\[ (x + 2)^2 + (y + 4)^2 = 30 \][/tex]
6. Identify the standard form of the circle equation:
The given equation [tex]\((x + 2)^2 + (y + 4)^2 = 30\)[/tex] is now in the standard form [tex]\((x - (-2))^2 + (y - (-4))^2 = r^2\)[/tex].
We can see that the radius squared ([tex]\(r^2\)[/tex]) is equal to 30.
7. Find the radius:
[tex]\[ r = \sqrt{30} \][/tex]
8. Round the radius to the nearest thousandth:
[tex]\[ r \approx 5.477 \][/tex]
Therefore, the radius of the circle, rounded to the nearest thousandth, is approximately [tex]\( 5.477 \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.