Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the equation [tex]\(4x^2 - 7x = 3x + 24\)[/tex], we will follow these steps:
1. Move all terms to one side of the equation to set it to zero:
[tex]\[ 4x^2 - 7x - 3x - 24 = 0 \][/tex]
2. Combine like terms:
[tex]\[ 4x^2 - 10x - 24 = 0 \][/tex]
3. Find the roots of the quadratic equation [tex]\(4x^2 - 10x - 24 = 0\)[/tex]. To do this, we use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a = 4\)[/tex], [tex]\(b = -10\)[/tex], and [tex]\(c = -24\)[/tex].
- Calculate the discriminant:
[tex]\[ b^2 - 4ac = (-10)^2 - 4(4)(-24) = 100 + 384 = 484 \][/tex]
- Compute the roots using the quadratic formula:
[tex]\[ x = \frac{-(-10) \pm \sqrt{484}}{2 \cdot 4} = \frac{10 \pm 22}{8} \][/tex]
4. Simplify the solutions:
[tex]\[ x = \frac{10 + 22}{8} = \frac{32}{8} = 4 \][/tex]
[tex]\[ x = \frac{10 - 22}{8} = \frac{-12}{8} = -\frac{3}{2} \][/tex]
The solutions to the quadratic equation [tex]\(4x^2 - 10x - 24 = 0\)[/tex] are [tex]\(x = 4\)[/tex] and [tex]\(x = -\frac{3}{2}\)[/tex].
5. Checking which solutions apply from the given options:
- [tex]\(x = -4\)[/tex] does not apply.
- [tex]\(x = -3\)[/tex] does not apply.
- [tex]\(x = -\frac{3}{2}\)[/tex] applies.
- [tex]\(x = \frac{2}{3}\)[/tex] does not apply.
- [tex]\(x = 2\)[/tex] does not apply.
- [tex]\(x = 4\)[/tex] applies.
Therefore, the solutions to the equation [tex]\(4x^2 - 7x = 3x + 24\)[/tex] are:
- [tex]\(x = -\frac{3}{2}\)[/tex]
- [tex]\(x = 4\)[/tex]
1. Move all terms to one side of the equation to set it to zero:
[tex]\[ 4x^2 - 7x - 3x - 24 = 0 \][/tex]
2. Combine like terms:
[tex]\[ 4x^2 - 10x - 24 = 0 \][/tex]
3. Find the roots of the quadratic equation [tex]\(4x^2 - 10x - 24 = 0\)[/tex]. To do this, we use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a = 4\)[/tex], [tex]\(b = -10\)[/tex], and [tex]\(c = -24\)[/tex].
- Calculate the discriminant:
[tex]\[ b^2 - 4ac = (-10)^2 - 4(4)(-24) = 100 + 384 = 484 \][/tex]
- Compute the roots using the quadratic formula:
[tex]\[ x = \frac{-(-10) \pm \sqrt{484}}{2 \cdot 4} = \frac{10 \pm 22}{8} \][/tex]
4. Simplify the solutions:
[tex]\[ x = \frac{10 + 22}{8} = \frac{32}{8} = 4 \][/tex]
[tex]\[ x = \frac{10 - 22}{8} = \frac{-12}{8} = -\frac{3}{2} \][/tex]
The solutions to the quadratic equation [tex]\(4x^2 - 10x - 24 = 0\)[/tex] are [tex]\(x = 4\)[/tex] and [tex]\(x = -\frac{3}{2}\)[/tex].
5. Checking which solutions apply from the given options:
- [tex]\(x = -4\)[/tex] does not apply.
- [tex]\(x = -3\)[/tex] does not apply.
- [tex]\(x = -\frac{3}{2}\)[/tex] applies.
- [tex]\(x = \frac{2}{3}\)[/tex] does not apply.
- [tex]\(x = 2\)[/tex] does not apply.
- [tex]\(x = 4\)[/tex] applies.
Therefore, the solutions to the equation [tex]\(4x^2 - 7x = 3x + 24\)[/tex] are:
- [tex]\(x = -\frac{3}{2}\)[/tex]
- [tex]\(x = 4\)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.