Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's solve this problem step-by-step.
### i) Finding the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex]
Given:
1. The curve passes through the point [tex]\((1, -11)\)[/tex].
2. The gradient at any point on the curve is [tex]\(a x^2 + b\)[/tex].
3. The tangent to the curve at the point [tex]\((2, -16)\)[/tex] is parallel to the [tex]\(x\)[/tex]-axis.
Since the tangent to the curve at the point [tex]\((2, -16)\)[/tex] is parallel to the [tex]\(x\)[/tex]-axis, the gradient at [tex]\((2, -16)\)[/tex] must be [tex]\(0\)[/tex]. Therefore, we have:
[tex]\[ a \cdot 2^2 + b = 0 \][/tex]
[tex]\[ 4a + b = 0 \][/tex]
[tex]\[ b = -4a \quad \text{(Equation 1)} \][/tex]
### ii) Finding the equation of the curve
The gradient of the curve (the derivative of [tex]\(y\)[/tex] with respect to [tex]\(x\)[/tex]) is given by:
[tex]\[ \frac{dy}{dx} = a x^2 + b \][/tex]
To find the equation of the curve, we need to integrate the gradient function. Integrating [tex]\(a x^2 + b\)[/tex] with respect to [tex]\(x\)[/tex], we get:
[tex]\[ y = \int (a x^2 + b) \, dx \][/tex]
[tex]\[ y = \int a x^2 \, dx + \int b \, dx \][/tex]
[tex]\[ y = a \int x^2 \, dx + b \int 1 \, dx \][/tex]
[tex]\[ y = a \left( \frac{x^3}{3} \right) + b x + C \][/tex]
[tex]\[ y = \frac{a x^3}{3} + b x + C \][/tex]
Now, we'll use the point [tex]\((1, -11)\)[/tex] to find the constant [tex]\(C\)[/tex]. Substituting [tex]\(x = 1\)[/tex] and [tex]\(y = -11\)[/tex] into the equation:
[tex]\[ -11 = \frac{a (1)^3}{3} + b (1) + C \][/tex]
[tex]\[ -11 = \frac{a}{3} + b + C \][/tex]
We already have [tex]\(b = -4a\)[/tex] from Equation 1. Substituting [tex]\(b\)[/tex] into the equation:
[tex]\[ -11 = \frac{a}{3} - 4a + C \][/tex]
[tex]\[ -11 = \frac{a - 12a}{3} + C \][/tex]
[tex]\[ -11 = \frac{-11a}{3} + C \][/tex]
[tex]\[ -11a = -33 - 3C \][/tex]
[tex]\[ 3 = 33 + 3C \][/tex]
Now we solve for [tex]\(C\)[/tex]:
[tex]\[ 3C = -22 \][/tex]
[tex]\[ C = -22/3 \][/tex]
### Summarizing the findings
1. From [tex]\(b = -4a\)[/tex]:
- a = b / (-4)
- The values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are defined parametrically:
- [tex]\(a = b/( -4 \)[/tex]
- [tex]\(b = -4a\)[/tex]
[tex]\(\therefore\)[/tex] [tex]\[ a = 1/4 \][/tex]
2. The equation of the curve is
\[ y = \frac{1}{4}x^3 - 4(-11) * x + \frac{4}{{-11}} / 13 +23/5.
### i) Finding the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex]
Given:
1. The curve passes through the point [tex]\((1, -11)\)[/tex].
2. The gradient at any point on the curve is [tex]\(a x^2 + b\)[/tex].
3. The tangent to the curve at the point [tex]\((2, -16)\)[/tex] is parallel to the [tex]\(x\)[/tex]-axis.
Since the tangent to the curve at the point [tex]\((2, -16)\)[/tex] is parallel to the [tex]\(x\)[/tex]-axis, the gradient at [tex]\((2, -16)\)[/tex] must be [tex]\(0\)[/tex]. Therefore, we have:
[tex]\[ a \cdot 2^2 + b = 0 \][/tex]
[tex]\[ 4a + b = 0 \][/tex]
[tex]\[ b = -4a \quad \text{(Equation 1)} \][/tex]
### ii) Finding the equation of the curve
The gradient of the curve (the derivative of [tex]\(y\)[/tex] with respect to [tex]\(x\)[/tex]) is given by:
[tex]\[ \frac{dy}{dx} = a x^2 + b \][/tex]
To find the equation of the curve, we need to integrate the gradient function. Integrating [tex]\(a x^2 + b\)[/tex] with respect to [tex]\(x\)[/tex], we get:
[tex]\[ y = \int (a x^2 + b) \, dx \][/tex]
[tex]\[ y = \int a x^2 \, dx + \int b \, dx \][/tex]
[tex]\[ y = a \int x^2 \, dx + b \int 1 \, dx \][/tex]
[tex]\[ y = a \left( \frac{x^3}{3} \right) + b x + C \][/tex]
[tex]\[ y = \frac{a x^3}{3} + b x + C \][/tex]
Now, we'll use the point [tex]\((1, -11)\)[/tex] to find the constant [tex]\(C\)[/tex]. Substituting [tex]\(x = 1\)[/tex] and [tex]\(y = -11\)[/tex] into the equation:
[tex]\[ -11 = \frac{a (1)^3}{3} + b (1) + C \][/tex]
[tex]\[ -11 = \frac{a}{3} + b + C \][/tex]
We already have [tex]\(b = -4a\)[/tex] from Equation 1. Substituting [tex]\(b\)[/tex] into the equation:
[tex]\[ -11 = \frac{a}{3} - 4a + C \][/tex]
[tex]\[ -11 = \frac{a - 12a}{3} + C \][/tex]
[tex]\[ -11 = \frac{-11a}{3} + C \][/tex]
[tex]\[ -11a = -33 - 3C \][/tex]
[tex]\[ 3 = 33 + 3C \][/tex]
Now we solve for [tex]\(C\)[/tex]:
[tex]\[ 3C = -22 \][/tex]
[tex]\[ C = -22/3 \][/tex]
### Summarizing the findings
1. From [tex]\(b = -4a\)[/tex]:
- a = b / (-4)
- The values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are defined parametrically:
- [tex]\(a = b/( -4 \)[/tex]
- [tex]\(b = -4a\)[/tex]
[tex]\(\therefore\)[/tex] [tex]\[ a = 1/4 \][/tex]
2. The equation of the curve is
\[ y = \frac{1}{4}x^3 - 4(-11) * x + \frac{4}{{-11}} / 13 +23/5.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.