Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve for the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex], we will follow a few steps involving the given conditions. Let's break it down:
### Step 1: Understanding the Gradient at a Point
The gradient of the curve at any point [tex]\(x\)[/tex] is given as:
[tex]\[ \frac{dy}{dx} = a x^2 + b \][/tex]
### Step 2: Condition at [tex]\( (2, -16) \)[/tex]
The tangent to the curve at the point [tex]\((2, -16)\)[/tex] is parallel to the [tex]\(x\)[/tex]-axis. This implies that the gradient at [tex]\(x = 2\)[/tex] is 0. Therefore:
[tex]\[ \left. \frac{dy}{dx} \right|_{x = 2} = 0 \][/tex]
Substituting [tex]\(x = 2\)[/tex] into the gradient expression:
[tex]\[ a (2)^2 + b = 0 \][/tex]
[tex]\[ 4a + b = 0 \][/tex]
So, we have our first equation:
[tex]\[ b = -4a \][/tex]
### Step 3: Integrating the Gradient
To find the curve [tex]\(y\)[/tex] which passes through the given points, we need to integrate the gradient function:
[tex]\[ \frac{dy}{dx} = a x^2 + b \][/tex]
Integrate with respect to [tex]\(x\)[/tex]:
[tex]\[ y = \int (a x^2 + b) \, dx \][/tex]
[tex]\[ y = \int a x^2 \, dx + \int b \, dx \][/tex]
[tex]\[ y = \frac{a}{3} x^3 + bx + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
### Step 4: Applying the Given Point [tex]\((1, -11)\)[/tex]
The curve passes through the point [tex]\((1, -11)\)[/tex], so we substitute [tex]\(x = 1\)[/tex] and [tex]\(y = -11\)[/tex] into the equation of the curve:
[tex]\[ -11 = \frac{a}{3} (1)^3 + b(1) + C \][/tex]
[tex]\[ -11 = \frac{a}{3} + b + C \][/tex]
Using [tex]\( b = -4a \)[/tex], substitute [tex]\(b\)[/tex] into the equation:
[tex]\[ -11 = \frac{a}{3} - 4a + C \][/tex]
[tex]\[ -11 = \frac{a}{3} - \frac{12a}{3} + C \][/tex]
[tex]\[ -11 = -\frac{11a}{3} + C \][/tex]
Multiplying through by 3:
[tex]\[ -33 = -11a + 3C \][/tex]
[tex]\[ 3C = -33 + 11a \][/tex]
[tex]\[ C = -11 + \frac{11a}{3} \][/tex]
[tex]\[ C = -11 + \frac{11a}{3} \][/tex]
### Step 5: Applying the Given Point [tex]\((2, -16)\)[/tex]
The curve also passes through the point [tex]\((2, -16)\)[/tex], so we substitute [tex]\(x = 2\)[/tex] and [tex]\(y = -16\)[/tex] into the equation of the curve:
[tex]\[ -16 = \frac{a}{3} (2)^3 + b(2) + C \][/tex]
[tex]\[ -16 = \frac{8a}{3} + 2b + C \][/tex]
Using [tex]\( b = -4a \)[/tex] and [tex]\( C = -11 + \frac{11a}{3}\)[/tex], substitute [tex]\(b\)[/tex] and [tex]\(C\)[/tex]:
[tex]\[ -16 = \frac{8a}{3} + 2(-4a) + \left( -11 + \frac{11a}{3} \right) \][/tex]
[tex]\[ -16 = \frac{8a}{3} - 8a - 11 + \frac{11a}{3} \][/tex]
[tex]\[ -16 = \frac{8a + 11a}{3} - 8a - 11 \][/tex]
[tex]\[ -16 = \frac{19a}{3} - 8a - 11 \][/tex]
Combine like terms:
[tex]\[ -16 = \frac{19a}{3} - \frac{24a}{3} - 11 \][/tex]
[tex]\[ -16 = -\frac{5a}{3} - 11 \][/tex]
[tex]\[ -16 + 11 = -\frac{5a}{3} \][/tex]
[tex]\[ -5 = -\frac{5a}{3} \][/tex]
[tex]\[ 5 = \frac{5a}{3} \][/tex]
Multiply both sides by 3:
[tex]\[ 15 = 5a \][/tex]
[tex]\[ a = 3 \][/tex]
Now substitute [tex]\(a = 3\)[/tex] back into the equation for [tex]\(b\)[/tex]:
[tex]\[ b = -4a \][/tex]
[tex]\[ b = -4(3) = -12 \][/tex]
### Conclusion
The values of the constants are:
[tex]\[ a = 3 \][/tex]
[tex]\[ b = -12 \][/tex]
### Step 1: Understanding the Gradient at a Point
The gradient of the curve at any point [tex]\(x\)[/tex] is given as:
[tex]\[ \frac{dy}{dx} = a x^2 + b \][/tex]
### Step 2: Condition at [tex]\( (2, -16) \)[/tex]
The tangent to the curve at the point [tex]\((2, -16)\)[/tex] is parallel to the [tex]\(x\)[/tex]-axis. This implies that the gradient at [tex]\(x = 2\)[/tex] is 0. Therefore:
[tex]\[ \left. \frac{dy}{dx} \right|_{x = 2} = 0 \][/tex]
Substituting [tex]\(x = 2\)[/tex] into the gradient expression:
[tex]\[ a (2)^2 + b = 0 \][/tex]
[tex]\[ 4a + b = 0 \][/tex]
So, we have our first equation:
[tex]\[ b = -4a \][/tex]
### Step 3: Integrating the Gradient
To find the curve [tex]\(y\)[/tex] which passes through the given points, we need to integrate the gradient function:
[tex]\[ \frac{dy}{dx} = a x^2 + b \][/tex]
Integrate with respect to [tex]\(x\)[/tex]:
[tex]\[ y = \int (a x^2 + b) \, dx \][/tex]
[tex]\[ y = \int a x^2 \, dx + \int b \, dx \][/tex]
[tex]\[ y = \frac{a}{3} x^3 + bx + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
### Step 4: Applying the Given Point [tex]\((1, -11)\)[/tex]
The curve passes through the point [tex]\((1, -11)\)[/tex], so we substitute [tex]\(x = 1\)[/tex] and [tex]\(y = -11\)[/tex] into the equation of the curve:
[tex]\[ -11 = \frac{a}{3} (1)^3 + b(1) + C \][/tex]
[tex]\[ -11 = \frac{a}{3} + b + C \][/tex]
Using [tex]\( b = -4a \)[/tex], substitute [tex]\(b\)[/tex] into the equation:
[tex]\[ -11 = \frac{a}{3} - 4a + C \][/tex]
[tex]\[ -11 = \frac{a}{3} - \frac{12a}{3} + C \][/tex]
[tex]\[ -11 = -\frac{11a}{3} + C \][/tex]
Multiplying through by 3:
[tex]\[ -33 = -11a + 3C \][/tex]
[tex]\[ 3C = -33 + 11a \][/tex]
[tex]\[ C = -11 + \frac{11a}{3} \][/tex]
[tex]\[ C = -11 + \frac{11a}{3} \][/tex]
### Step 5: Applying the Given Point [tex]\((2, -16)\)[/tex]
The curve also passes through the point [tex]\((2, -16)\)[/tex], so we substitute [tex]\(x = 2\)[/tex] and [tex]\(y = -16\)[/tex] into the equation of the curve:
[tex]\[ -16 = \frac{a}{3} (2)^3 + b(2) + C \][/tex]
[tex]\[ -16 = \frac{8a}{3} + 2b + C \][/tex]
Using [tex]\( b = -4a \)[/tex] and [tex]\( C = -11 + \frac{11a}{3}\)[/tex], substitute [tex]\(b\)[/tex] and [tex]\(C\)[/tex]:
[tex]\[ -16 = \frac{8a}{3} + 2(-4a) + \left( -11 + \frac{11a}{3} \right) \][/tex]
[tex]\[ -16 = \frac{8a}{3} - 8a - 11 + \frac{11a}{3} \][/tex]
[tex]\[ -16 = \frac{8a + 11a}{3} - 8a - 11 \][/tex]
[tex]\[ -16 = \frac{19a}{3} - 8a - 11 \][/tex]
Combine like terms:
[tex]\[ -16 = \frac{19a}{3} - \frac{24a}{3} - 11 \][/tex]
[tex]\[ -16 = -\frac{5a}{3} - 11 \][/tex]
[tex]\[ -16 + 11 = -\frac{5a}{3} \][/tex]
[tex]\[ -5 = -\frac{5a}{3} \][/tex]
[tex]\[ 5 = \frac{5a}{3} \][/tex]
Multiply both sides by 3:
[tex]\[ 15 = 5a \][/tex]
[tex]\[ a = 3 \][/tex]
Now substitute [tex]\(a = 3\)[/tex] back into the equation for [tex]\(b\)[/tex]:
[tex]\[ b = -4a \][/tex]
[tex]\[ b = -4(3) = -12 \][/tex]
### Conclusion
The values of the constants are:
[tex]\[ a = 3 \][/tex]
[tex]\[ b = -12 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.