Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To calculate the estimate of the mean waiting time per person using the given data, we will follow these steps:
1. Identify the midpoints of the intervals:
- For the interval [tex]\(0 < T \leq 10\)[/tex], the midpoint is [tex]\( \frac{0 + 10}{2} = 5 \)[/tex].
- For the interval [tex]\(10 < T \leq 20\)[/tex], the midpoint is [tex]\( \frac{10 + 20}{2} = 15 \)[/tex].
- For the interval [tex]\(20 < T \leq 30\)[/tex], the midpoint is [tex]\( \frac{20 + 30}{2} = 25 \)[/tex].
2. List the midpoints and the corresponding frequencies:
- Midpoints: [tex]\( [5, 15, 25] \)[/tex]
- Frequencies: [tex]\( [42, 30, 8] \)[/tex]
3. Calculate the total number of people (sum of frequencies):
[tex]\[ \text{Total number of people} = 42 + 30 + 8 = 80 \][/tex]
4. Calculate the sum of the product of midpoints and frequencies:
[tex]\[ \text{Total time waited} = (5 \times 42) + (15 \times 30) + (25 \times 8) \][/tex]
Let’s break this down:
[tex]\[ 5 \times 42 = 210 \][/tex]
[tex]\[ 15 \times 30 = 450 \][/tex]
[tex]\[ 25 \times 8 = 200 \][/tex]
Summing these:
[tex]\[ 210 + 450 + 200 = 860 \][/tex]
5. Estimate the mean time waited per person:
[tex]\[ \text{Mean time waited} = \frac{\text{Total time waited}}{\text{Total number of people}} = \frac{860}{80} = 15.75 \][/tex]
Thus, the estimated mean time waited per person is [tex]\( 15.75 \)[/tex] minutes.
1. Identify the midpoints of the intervals:
- For the interval [tex]\(0 < T \leq 10\)[/tex], the midpoint is [tex]\( \frac{0 + 10}{2} = 5 \)[/tex].
- For the interval [tex]\(10 < T \leq 20\)[/tex], the midpoint is [tex]\( \frac{10 + 20}{2} = 15 \)[/tex].
- For the interval [tex]\(20 < T \leq 30\)[/tex], the midpoint is [tex]\( \frac{20 + 30}{2} = 25 \)[/tex].
2. List the midpoints and the corresponding frequencies:
- Midpoints: [tex]\( [5, 15, 25] \)[/tex]
- Frequencies: [tex]\( [42, 30, 8] \)[/tex]
3. Calculate the total number of people (sum of frequencies):
[tex]\[ \text{Total number of people} = 42 + 30 + 8 = 80 \][/tex]
4. Calculate the sum of the product of midpoints and frequencies:
[tex]\[ \text{Total time waited} = (5 \times 42) + (15 \times 30) + (25 \times 8) \][/tex]
Let’s break this down:
[tex]\[ 5 \times 42 = 210 \][/tex]
[tex]\[ 15 \times 30 = 450 \][/tex]
[tex]\[ 25 \times 8 = 200 \][/tex]
Summing these:
[tex]\[ 210 + 450 + 200 = 860 \][/tex]
5. Estimate the mean time waited per person:
[tex]\[ \text{Mean time waited} = \frac{\text{Total time waited}}{\text{Total number of people}} = \frac{860}{80} = 15.75 \][/tex]
Thus, the estimated mean time waited per person is [tex]\( 15.75 \)[/tex] minutes.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.