Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Slope Given Two Points

Instructions: Find the slope of the line through the points [tex]\((6,16)\)[/tex] and [tex]\((-6,4)\)[/tex]. Simplify fractions. If the slope is undefined, enter "undefined."


Sagot :

To find the slope of the line passing through the points [tex]\((6, 16)\)[/tex] and [tex]\((-6, 4)\)[/tex], we follow these steps:

1. Identify the coordinates of the two points:
- Point 1: [tex]\((x_1, y_1) = (6, 16)\)[/tex]
- Point 2: [tex]\((x_2, y_2) = (-6, 4)\)[/tex]

2. Calculate the change in the y-coordinates ([tex]\(\Delta y\)[/tex]) and the change in the x-coordinates ([tex]\(\Delta x\)[/tex]):
[tex]\[ \Delta y = y_2 - y_1 = 4 - 16 = -12 \][/tex]
[tex]\[ \Delta x = x_2 - x_1 = -6 - 6 = -12 \][/tex]

3. Determine whether the slope is defined:
- The slope [tex]\(m\)[/tex] of a line is given by the formula:
[tex]\[ m = \frac{\Delta y}{\Delta x} \][/tex]
- In this case:
[tex]\[ m = \frac{-12}{-12} \][/tex]
- Simplify the fraction:
[tex]\[ m = 1.0 \][/tex]

Therefore, the slope of the line passing through the points [tex]\((6, 16)\)[/tex] and [tex]\((-6, 4)\)[/tex] is [tex]\(1.0\)[/tex].