Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Slope Given Two Points

Instructions: Find the slope of the line through the points [tex]\((6,16)\)[/tex] and [tex]\((-6,4)\)[/tex]. Simplify fractions. If the slope is undefined, enter "undefined."


Sagot :

To find the slope of the line passing through the points [tex]\((6, 16)\)[/tex] and [tex]\((-6, 4)\)[/tex], we follow these steps:

1. Identify the coordinates of the two points:
- Point 1: [tex]\((x_1, y_1) = (6, 16)\)[/tex]
- Point 2: [tex]\((x_2, y_2) = (-6, 4)\)[/tex]

2. Calculate the change in the y-coordinates ([tex]\(\Delta y\)[/tex]) and the change in the x-coordinates ([tex]\(\Delta x\)[/tex]):
[tex]\[ \Delta y = y_2 - y_1 = 4 - 16 = -12 \][/tex]
[tex]\[ \Delta x = x_2 - x_1 = -6 - 6 = -12 \][/tex]

3. Determine whether the slope is defined:
- The slope [tex]\(m\)[/tex] of a line is given by the formula:
[tex]\[ m = \frac{\Delta y}{\Delta x} \][/tex]
- In this case:
[tex]\[ m = \frac{-12}{-12} \][/tex]
- Simplify the fraction:
[tex]\[ m = 1.0 \][/tex]

Therefore, the slope of the line passing through the points [tex]\((6, 16)\)[/tex] and [tex]\((-6, 4)\)[/tex] is [tex]\(1.0\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.