At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which ordered pair makes both inequalities true, we need to check each pair against the two given inequalities:
1. [tex]\( y < 3x - 1 \)[/tex]
2. [tex]\( y \geq -x + 4 \)[/tex]
Let’s evaluate each pair one by one.
### For the pair [tex]\((4, 0)\)[/tex]:
1. Substitute [tex]\(x = 4\)[/tex] and [tex]\(y = 0\)[/tex] into the first inequality:
[tex]\[ 0 < 3(4) - 1 \][/tex]
[tex]\[ 0 < 12 - 1 \][/tex]
[tex]\[ 0 < 11 \][/tex]
This inequality is true.
2. Substitute [tex]\(x = 4\)[/tex] and [tex]\(y = 0\)[/tex] into the second inequality:
[tex]\[ 0 \geq -4 + 4 \][/tex]
[tex]\[ 0 \geq 0 \][/tex]
This inequality is true as well.
Since both inequalities are satisfied, [tex]\((4, 0)\)[/tex] makes both inequalities true.
### For the pair [tex]\((1, 2)\)[/tex]:
1. Substitute [tex]\(x = 1\)[/tex] and [tex]\(y = 2\)[/tex] into the first inequality:
[tex]\[ 2 < 3(1) - 1 \][/tex]
[tex]\[ 2 < 3 - 1 \][/tex]
[tex]\[ 2 < 2 \][/tex]
This inequality is false.
Since the first inequality is not satisfied, we don't need to check the second inequality for this pair. [tex]\((1, 2)\)[/tex] does not make both inequalities true.
### For the pair [tex]\((0, 4)\)[/tex]:
1. Substitute [tex]\(x = 0\)[/tex] and [tex]\(y = 4\)[/tex] into the first inequality:
[tex]\[ 4 < 3(0) - 1 \][/tex]
[tex]\[ 4 < -1 \][/tex]
This inequality is false.
Since the first inequality is not satisfied, we don't need to check the second inequality for this pair. [tex]\((0, 4)\)[/tex] does not make both inequalities true.
### For the pair [tex]\((2, 1)\)[/tex]:
1. Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 1\)[/tex] into the first inequality:
[tex]\[ 1 < 3(2) - 1 \][/tex]
[tex]\[ 1 < 6 - 1 \][/tex]
[tex]\[ 1 < 5 \][/tex]
This inequality is true.
2. Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 1\)[/tex] into the second inequality:
[tex]\[ 1 \geq -2 + 4 \][/tex]
[tex]\[ 1 \geq 2 \][/tex]
This inequality is false.
Since the second inequality is not satisfied, [tex]\((2, 1)\)[/tex] does not make both inequalities true.
Based on the evaluation, the ordered pair that makes both inequalities true is [tex]\((4, 0)\)[/tex].
1. [tex]\( y < 3x - 1 \)[/tex]
2. [tex]\( y \geq -x + 4 \)[/tex]
Let’s evaluate each pair one by one.
### For the pair [tex]\((4, 0)\)[/tex]:
1. Substitute [tex]\(x = 4\)[/tex] and [tex]\(y = 0\)[/tex] into the first inequality:
[tex]\[ 0 < 3(4) - 1 \][/tex]
[tex]\[ 0 < 12 - 1 \][/tex]
[tex]\[ 0 < 11 \][/tex]
This inequality is true.
2. Substitute [tex]\(x = 4\)[/tex] and [tex]\(y = 0\)[/tex] into the second inequality:
[tex]\[ 0 \geq -4 + 4 \][/tex]
[tex]\[ 0 \geq 0 \][/tex]
This inequality is true as well.
Since both inequalities are satisfied, [tex]\((4, 0)\)[/tex] makes both inequalities true.
### For the pair [tex]\((1, 2)\)[/tex]:
1. Substitute [tex]\(x = 1\)[/tex] and [tex]\(y = 2\)[/tex] into the first inequality:
[tex]\[ 2 < 3(1) - 1 \][/tex]
[tex]\[ 2 < 3 - 1 \][/tex]
[tex]\[ 2 < 2 \][/tex]
This inequality is false.
Since the first inequality is not satisfied, we don't need to check the second inequality for this pair. [tex]\((1, 2)\)[/tex] does not make both inequalities true.
### For the pair [tex]\((0, 4)\)[/tex]:
1. Substitute [tex]\(x = 0\)[/tex] and [tex]\(y = 4\)[/tex] into the first inequality:
[tex]\[ 4 < 3(0) - 1 \][/tex]
[tex]\[ 4 < -1 \][/tex]
This inequality is false.
Since the first inequality is not satisfied, we don't need to check the second inequality for this pair. [tex]\((0, 4)\)[/tex] does not make both inequalities true.
### For the pair [tex]\((2, 1)\)[/tex]:
1. Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 1\)[/tex] into the first inequality:
[tex]\[ 1 < 3(2) - 1 \][/tex]
[tex]\[ 1 < 6 - 1 \][/tex]
[tex]\[ 1 < 5 \][/tex]
This inequality is true.
2. Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 1\)[/tex] into the second inequality:
[tex]\[ 1 \geq -2 + 4 \][/tex]
[tex]\[ 1 \geq 2 \][/tex]
This inequality is false.
Since the second inequality is not satisfied, [tex]\((2, 1)\)[/tex] does not make both inequalities true.
Based on the evaluation, the ordered pair that makes both inequalities true is [tex]\((4, 0)\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.