Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve for [tex]\( y_1 < y_2 \)[/tex], we need to determine the intervals or specific points in the domain where [tex]\( y_1 \)[/tex] is strictly less than [tex]\( y_2 \)[/tex]. Let's examine each given option carefully.
A. [tex]\( (-2, 5) \)[/tex]
- This option represents the open interval between -2 and 5. Within this interval, we cannot guarantee that [tex]\( y_1 \)[/tex] is always less than [tex]\( y_2 \)[/tex] for all possible values of [tex]\( y_1 \)[/tex] and [tex]\( y_2 \)[/tex].
B. [tex]\( \{ -2, 5 \} \)[/tex]
- This option represents the set containing the points -2 and 5. At these specific points, we still cannot determine a consistent inequality relationship between [tex]\( y_1 \)[/tex] and [tex]\( y_2 \)[/tex].
C. [tex]\( \varnothing \)[/tex]
- This option represents the empty set, implying there are no values where [tex]\( y_1 \)[/tex] is less than [tex]\( y_2 \)[/tex]. However, it is unlikely that there are no such values altogether, unless [tex]\( y_1 \)[/tex] and [tex]\( y_2 \)[/tex] are identical functions, which is not specified here.
D. [tex]\( (-\infty, -2) \cup (5, \infty) \)[/tex]
- This option represents the union of two intervals: one extending from negative infinity to -2 (not including -2), and the other extending from 5 to positive infinity (not including 5). In these intervals, it can be inferred that [tex]\( y_1 \)[/tex] is consistently less than [tex]\( y_2 \)[/tex].
Given our choices and the need for [tex]\( y_1 \)[/tex] to be consistently less than [tex]\( y_2 \)[/tex], option D, [tex]\((-\infty, -2) \cup (5, \infty)\)[/tex], is the correct interval where [tex]\( y_1 < y_2 \)[/tex].
Thus, the correct answer for the inequality [tex]\( y_1 < y_2 \)[/tex] is:
[tex]\[ \boxed{4} \][/tex]
Which corresponds to:
[tex]\[ \boxed{(-\infty, -2) \cup (5, \infty)} \][/tex]
A. [tex]\( (-2, 5) \)[/tex]
- This option represents the open interval between -2 and 5. Within this interval, we cannot guarantee that [tex]\( y_1 \)[/tex] is always less than [tex]\( y_2 \)[/tex] for all possible values of [tex]\( y_1 \)[/tex] and [tex]\( y_2 \)[/tex].
B. [tex]\( \{ -2, 5 \} \)[/tex]
- This option represents the set containing the points -2 and 5. At these specific points, we still cannot determine a consistent inequality relationship between [tex]\( y_1 \)[/tex] and [tex]\( y_2 \)[/tex].
C. [tex]\( \varnothing \)[/tex]
- This option represents the empty set, implying there are no values where [tex]\( y_1 \)[/tex] is less than [tex]\( y_2 \)[/tex]. However, it is unlikely that there are no such values altogether, unless [tex]\( y_1 \)[/tex] and [tex]\( y_2 \)[/tex] are identical functions, which is not specified here.
D. [tex]\( (-\infty, -2) \cup (5, \infty) \)[/tex]
- This option represents the union of two intervals: one extending from negative infinity to -2 (not including -2), and the other extending from 5 to positive infinity (not including 5). In these intervals, it can be inferred that [tex]\( y_1 \)[/tex] is consistently less than [tex]\( y_2 \)[/tex].
Given our choices and the need for [tex]\( y_1 \)[/tex] to be consistently less than [tex]\( y_2 \)[/tex], option D, [tex]\((-\infty, -2) \cup (5, \infty)\)[/tex], is the correct interval where [tex]\( y_1 < y_2 \)[/tex].
Thus, the correct answer for the inequality [tex]\( y_1 < y_2 \)[/tex] is:
[tex]\[ \boxed{4} \][/tex]
Which corresponds to:
[tex]\[ \boxed{(-\infty, -2) \cup (5, \infty)} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.