Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly!
To verify the equality [tex]\(\left(\frac{-1}{2}\right) + \frac{1}{3} = \frac{1}{3} + \left(-\frac{1}{2}\right)\)[/tex], we'll carefully evaluate both sides step-by-step.
### Step 1: Evaluate the Left Side
The left side of the equation is [tex]\(\left(\frac{-1}{2}\right) + \frac{1}{3}\)[/tex].
1. Find a common denominator: The common denominator for 2 and 3 is 6.
- For [tex]\(\frac{-1}{2}\)[/tex], convert to have a denominator of 6: [tex]\(\frac{-1 \times 3}{2 \times 3} = \frac{-3}{6}\)[/tex]
- For [tex]\(\frac{1}{3}\)[/tex], convert to have a denominator of 6: [tex]\(\frac{1 \times 2}{3 \times 2} = \frac{2}{6}\)[/tex]
2. Combine the fractions:
[tex]\[ \frac{-3}{6} + \frac{2}{6} = \frac{-3 + 2}{6} = \frac{-1}{6} \][/tex]
Thus, the value of the left side is [tex]\(\frac{-1}{6}\)[/tex].
### Step 2: Evaluate the Right Side
The right side of the equation is [tex]\(\frac{1}{3} + \left(\frac{-1}{2}\right)\)[/tex].
1. Find a common denominator: The common denominator for 3 and 2 is 6.
- For [tex]\(\frac{1}{3}\)[/tex], convert to have a denominator of 6: [tex]\(\frac{1 \times 2}{3 \times 2} = \frac{2}{6}\)[/tex]
- For [tex]\(\frac{-1}{2}\)[/tex], convert to have a denominator of 6: [tex]\(\frac{-1 \times 3}{2 \times 3} = \frac{-3}{6}\)[/tex]
2. Combine the fractions:
[tex]\[ \frac{2}{6} + \frac{-3}{6} = \frac{2 - 3}{6} = \frac{-1}{6} \][/tex]
Thus, the value of the right side is [tex]\(\frac{-1}{6}\)[/tex].
### Step 3: Compare Both Sides
The left side is [tex]\(\frac{-1}{6}\)[/tex] and the right side is [tex]\(\frac{-1}{6}\)[/tex].
Since both sides are equal, we have:
[tex]\[ \left(\frac{-1}{2}\right) + \frac{1}{3} = \frac{1}{3} + \left(\frac{-1}{2}\right) \][/tex]
Thus, the given equation is verified to be true.
To verify the equality [tex]\(\left(\frac{-1}{2}\right) + \frac{1}{3} = \frac{1}{3} + \left(-\frac{1}{2}\right)\)[/tex], we'll carefully evaluate both sides step-by-step.
### Step 1: Evaluate the Left Side
The left side of the equation is [tex]\(\left(\frac{-1}{2}\right) + \frac{1}{3}\)[/tex].
1. Find a common denominator: The common denominator for 2 and 3 is 6.
- For [tex]\(\frac{-1}{2}\)[/tex], convert to have a denominator of 6: [tex]\(\frac{-1 \times 3}{2 \times 3} = \frac{-3}{6}\)[/tex]
- For [tex]\(\frac{1}{3}\)[/tex], convert to have a denominator of 6: [tex]\(\frac{1 \times 2}{3 \times 2} = \frac{2}{6}\)[/tex]
2. Combine the fractions:
[tex]\[ \frac{-3}{6} + \frac{2}{6} = \frac{-3 + 2}{6} = \frac{-1}{6} \][/tex]
Thus, the value of the left side is [tex]\(\frac{-1}{6}\)[/tex].
### Step 2: Evaluate the Right Side
The right side of the equation is [tex]\(\frac{1}{3} + \left(\frac{-1}{2}\right)\)[/tex].
1. Find a common denominator: The common denominator for 3 and 2 is 6.
- For [tex]\(\frac{1}{3}\)[/tex], convert to have a denominator of 6: [tex]\(\frac{1 \times 2}{3 \times 2} = \frac{2}{6}\)[/tex]
- For [tex]\(\frac{-1}{2}\)[/tex], convert to have a denominator of 6: [tex]\(\frac{-1 \times 3}{2 \times 3} = \frac{-3}{6}\)[/tex]
2. Combine the fractions:
[tex]\[ \frac{2}{6} + \frac{-3}{6} = \frac{2 - 3}{6} = \frac{-1}{6} \][/tex]
Thus, the value of the right side is [tex]\(\frac{-1}{6}\)[/tex].
### Step 3: Compare Both Sides
The left side is [tex]\(\frac{-1}{6}\)[/tex] and the right side is [tex]\(\frac{-1}{6}\)[/tex].
Since both sides are equal, we have:
[tex]\[ \left(\frac{-1}{2}\right) + \frac{1}{3} = \frac{1}{3} + \left(\frac{-1}{2}\right) \][/tex]
Thus, the given equation is verified to be true.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.