At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which expression is equivalent to [tex]\((f+g)(4)\)[/tex], let’s carefully analyze each option and how it relates to the function notation involved.
First, let's recall that the notation [tex]\((f+g)(x)\)[/tex] means the sum of the functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]. Specifically, [tex]\((f+g)(x) = f(x) + g(x)\)[/tex].
Given that we want to find the expression equivalent to [tex]\((f+g)(4)\)[/tex], this would mean calculating both functions [tex]\(f\)[/tex] and [tex]\(g\)[/tex] at [tex]\(x = 4\)[/tex] and then adding their results together.
Hence, [tex]\((f+g)(4) = f(4) + g(4)\)[/tex].
Now let's examine each option:
1. [tex]\(f(4) + g(4)\)[/tex]: This directly corresponds to our expanded expression [tex]\((f+g)(4)\)[/tex].
2. [tex]\(f(x) + g(4)\)[/tex]: This is not equivalent because [tex]\(f(x)\)[/tex] involves a variable [tex]\(x\)[/tex] rather than the specific value [tex]\(4\)[/tex].
3. [tex]\(f(4 + g(4))\)[/tex]: This is not equivalent since it involves evaluating [tex]\(f\)[/tex] at a different argument [tex]\(4 + g(4)\)[/tex] rather than evaluating [tex]\(f\)[/tex] and [tex]\(g\)[/tex] separately at [tex]\(4\)[/tex].
4. [tex]\(4(f(x) + g(x))\)[/tex]: This is not equivalent because it involves multiplying the sum of [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] by [tex]\(4\)[/tex], which is not the same as evaluating the sum of [tex]\(f\)[/tex] and [tex]\(g\)[/tex] at [tex]\(4\)[/tex].
Thus, the correct expression equivalent to [tex]\((f+g)(4)\)[/tex] is:
[tex]\[ f(4) + g(4) \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{f(4) + g(4)} \][/tex]
First, let's recall that the notation [tex]\((f+g)(x)\)[/tex] means the sum of the functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]. Specifically, [tex]\((f+g)(x) = f(x) + g(x)\)[/tex].
Given that we want to find the expression equivalent to [tex]\((f+g)(4)\)[/tex], this would mean calculating both functions [tex]\(f\)[/tex] and [tex]\(g\)[/tex] at [tex]\(x = 4\)[/tex] and then adding their results together.
Hence, [tex]\((f+g)(4) = f(4) + g(4)\)[/tex].
Now let's examine each option:
1. [tex]\(f(4) + g(4)\)[/tex]: This directly corresponds to our expanded expression [tex]\((f+g)(4)\)[/tex].
2. [tex]\(f(x) + g(4)\)[/tex]: This is not equivalent because [tex]\(f(x)\)[/tex] involves a variable [tex]\(x\)[/tex] rather than the specific value [tex]\(4\)[/tex].
3. [tex]\(f(4 + g(4))\)[/tex]: This is not equivalent since it involves evaluating [tex]\(f\)[/tex] at a different argument [tex]\(4 + g(4)\)[/tex] rather than evaluating [tex]\(f\)[/tex] and [tex]\(g\)[/tex] separately at [tex]\(4\)[/tex].
4. [tex]\(4(f(x) + g(x))\)[/tex]: This is not equivalent because it involves multiplying the sum of [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] by [tex]\(4\)[/tex], which is not the same as evaluating the sum of [tex]\(f\)[/tex] and [tex]\(g\)[/tex] at [tex]\(4\)[/tex].
Thus, the correct expression equivalent to [tex]\((f+g)(4)\)[/tex] is:
[tex]\[ f(4) + g(4) \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{f(4) + g(4)} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.