Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's consider the matrix [tex]\( T \)[/tex]:
[tex]\[ T=\left[\begin{array}{ccccc} 0 & 3.2 & 3.5 & 0 & 5.4 \\ 2.6 & 0 & 1.8 & 2.1 & 0 \\ 0 & 0 & 0 & 3.8 & 0 \\ 6.8 & 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 6.2 & 0 \end{array}\right] \][/tex]
### Step 1: Find the row with the smallest nonzero element.
First, let's identify all the nonzero elements in the matrix [tex]\( T \)[/tex]. These elements are:
- Row 1: [tex]\( 3.2, 3.5, 5.4 \)[/tex]
- Row 2: [tex]\( 2.6, 1.8, 2.1 \)[/tex]
- Row 3: [tex]\( 3.8 \)[/tex]
- Row 4: [tex]\( 6.8, 7 \)[/tex]
- Row 5: [tex]\( 6.2 \)[/tex]
Next, we need to find the smallest nonzero element from these values:
- Comparing [tex]\( 3.2, 3.5, 5.4, 2.6, 1.8, 2.1, 3.8, 6.8, 7, 6.2 \)[/tex], we see that [tex]\( 1.8 \)[/tex] is the smallest.
The smallest nonzero element [tex]\( 1.8 \)[/tex] is located in row 2.
Thus, the row containing the smallest nonzero element is Row 2.
### Step 2: Find the value of [tex]\( t_{34} \)[/tex].
The notation [tex]\( t_{34} \)[/tex] indicates the element located in the 3rd row and the 4th column of the matrix [tex]\( T \)[/tex]:
Looking at row 3 and column 4 of the matrix [tex]\( T \)[/tex]:
[tex]\[ T = \left[\begin{array}{ccccc} 0 & 3.2 & 3.5 & 0 & 5.4 \\ 2.6 & 0 & 1.8 & 2.1 & 0 \\ 0 & 0 & 0 & 3.8 & 0 \\ 6.8 & 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 6.2 & 0 \end{array}\right] \][/tex]
From the 3rd row and the 4th column, the value is [tex]\( 3.8 \)[/tex].
So, the value of [tex]\( t_{34} \)[/tex] is [tex]\( 3.8 \)[/tex].
### Summary:
- The row containing the smallest nonzero element is Row 2.
- The value of [tex]\( t_{34} \)[/tex] is [tex]\( 3.8 \)[/tex].
[tex]\[ T=\left[\begin{array}{ccccc} 0 & 3.2 & 3.5 & 0 & 5.4 \\ 2.6 & 0 & 1.8 & 2.1 & 0 \\ 0 & 0 & 0 & 3.8 & 0 \\ 6.8 & 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 6.2 & 0 \end{array}\right] \][/tex]
### Step 1: Find the row with the smallest nonzero element.
First, let's identify all the nonzero elements in the matrix [tex]\( T \)[/tex]. These elements are:
- Row 1: [tex]\( 3.2, 3.5, 5.4 \)[/tex]
- Row 2: [tex]\( 2.6, 1.8, 2.1 \)[/tex]
- Row 3: [tex]\( 3.8 \)[/tex]
- Row 4: [tex]\( 6.8, 7 \)[/tex]
- Row 5: [tex]\( 6.2 \)[/tex]
Next, we need to find the smallest nonzero element from these values:
- Comparing [tex]\( 3.2, 3.5, 5.4, 2.6, 1.8, 2.1, 3.8, 6.8, 7, 6.2 \)[/tex], we see that [tex]\( 1.8 \)[/tex] is the smallest.
The smallest nonzero element [tex]\( 1.8 \)[/tex] is located in row 2.
Thus, the row containing the smallest nonzero element is Row 2.
### Step 2: Find the value of [tex]\( t_{34} \)[/tex].
The notation [tex]\( t_{34} \)[/tex] indicates the element located in the 3rd row and the 4th column of the matrix [tex]\( T \)[/tex]:
Looking at row 3 and column 4 of the matrix [tex]\( T \)[/tex]:
[tex]\[ T = \left[\begin{array}{ccccc} 0 & 3.2 & 3.5 & 0 & 5.4 \\ 2.6 & 0 & 1.8 & 2.1 & 0 \\ 0 & 0 & 0 & 3.8 & 0 \\ 6.8 & 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 6.2 & 0 \end{array}\right] \][/tex]
From the 3rd row and the 4th column, the value is [tex]\( 3.8 \)[/tex].
So, the value of [tex]\( t_{34} \)[/tex] is [tex]\( 3.8 \)[/tex].
### Summary:
- The row containing the smallest nonzero element is Row 2.
- The value of [tex]\( t_{34} \)[/tex] is [tex]\( 3.8 \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.