At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's break down the problem into two parts:
1. Finding the equation of the line through the point (2, -5) and parallel to the given line [tex]\(3x + 4y + 5 = 0\)[/tex].
2. Finding the equation of the line through the same point (2, -5) but perpendicular to the given line.
### Part 1: Line Parallel to [tex]\(3x + 4y + 5 = 0\)[/tex]
1. Find the slope of the given line:
The given line is [tex]\(3x + 4y + 5 = 0\)[/tex]. We need it in the slope-intercept form [tex]\(y = mx + c\)[/tex]:
[tex]\[ 4y = -3x - 5 \][/tex]
[tex]\[ y = -\frac{3}{4}x - \frac{5}{4} \][/tex]
Therefore, the slope of the given line is [tex]\(-\frac{3}{4}\)[/tex].
2. Use the point-slope form for the new line that passes through the point (2, -5) and has the same slope:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Where [tex]\(m = -\frac{3}{4}\)[/tex], [tex]\((x_1, y_1) = (2, -5)\)[/tex].
3. Substitute the values:
[tex]\[ y - (-5) = -\frac{3}{4}(x - 2) \][/tex]
Simplifying:
[tex]\[ y + 5 = -\frac{3}{4}(x - 2) \][/tex]
[tex]\[ y + 5 = -\frac{3}{4}x + \frac{3}{2} \][/tex]
[tex]\[ y = -\frac{3}{4}x + \frac{3}{2} - 5 \][/tex]
[tex]\[ y = -\frac{3}{4}x - \frac{7}{2} \][/tex]
Converting into the standard form [tex]\(Ax + By + C = 0\)[/tex]:
[tex]\[ 3x + 4y + 14 = 0 \][/tex]
So, the equation of the line parallel to [tex]\(3x + 4y + 5 = 0\)[/tex] and passing through (2, -5) is:
[tex]\[ 3x + 4y + 14 = 0 \][/tex]
### Part 2: Line Perpendicular to [tex]\(3x + 4y + 5 = 0\)[/tex]
1. Slope of the perpendicular line is the negative reciprocal of the original slope [tex]\(-\frac{3}{4}\)[/tex]. So, if the original slope [tex]\(m = -\frac{3}{4}\)[/tex], the slope [tex]\(m_{\perp}\)[/tex] of the perpendicular line will be:
[tex]\[ m_{\perp} = \frac{4}{3} \][/tex]
2. Use the point-slope form for the new line that passes through the point (2, -5) with slope [tex]\(\frac{4}{3}\)[/tex]:
[tex]\[ y - y_1 = m_{\perp}(x - x_1) \][/tex]
Where [tex]\(m_{\perp} = \frac{4}{3}\)[/tex], [tex]\((x_1, y_1) = (2, -5)\)[/tex].
3. Substitute the values:
[tex]\[ y - (-5) = \frac{4}{3}(x - 2) \][/tex]
Simplifying:
[tex]\[ y + 5 = \frac{4}{3}(x - 2) \][/tex]
[tex]\[ y + 5 = \frac{4}{3}x - \frac{8}{3} \][/tex]
[tex]\[ y = \frac{4}{3}x - \frac{8}{3} - 5 \][/tex]
[tex]\[ y = \frac{4}{3}x - \frac{23}{3} \][/tex]
Converting into the standard form [tex]\(Ax + By + C = 0\)[/tex]:
[tex]\[ 4x - 3y - 23 = 0 \][/tex]
So, the equation of the line perpendicular to [tex]\(3x + 4y + 5 = 0\)[/tex] and passing through (2, -5) is:
[tex]\[ 4x - 3y - 23 = 0 \][/tex]
### Conclusion:
- The equation of the line through (2, -5) and parallel to [tex]\(3x + 4y + 5 = 0\)[/tex] is: [tex]\(3x + 4y + 14 = 0\)[/tex].
- The equation of the line through (2, -5) and perpendicular to [tex]\(3x + 4y + 5 = 0\)[/tex] is: [tex]\(4x - 3y - 23 = 0\)[/tex].
1. Finding the equation of the line through the point (2, -5) and parallel to the given line [tex]\(3x + 4y + 5 = 0\)[/tex].
2. Finding the equation of the line through the same point (2, -5) but perpendicular to the given line.
### Part 1: Line Parallel to [tex]\(3x + 4y + 5 = 0\)[/tex]
1. Find the slope of the given line:
The given line is [tex]\(3x + 4y + 5 = 0\)[/tex]. We need it in the slope-intercept form [tex]\(y = mx + c\)[/tex]:
[tex]\[ 4y = -3x - 5 \][/tex]
[tex]\[ y = -\frac{3}{4}x - \frac{5}{4} \][/tex]
Therefore, the slope of the given line is [tex]\(-\frac{3}{4}\)[/tex].
2. Use the point-slope form for the new line that passes through the point (2, -5) and has the same slope:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Where [tex]\(m = -\frac{3}{4}\)[/tex], [tex]\((x_1, y_1) = (2, -5)\)[/tex].
3. Substitute the values:
[tex]\[ y - (-5) = -\frac{3}{4}(x - 2) \][/tex]
Simplifying:
[tex]\[ y + 5 = -\frac{3}{4}(x - 2) \][/tex]
[tex]\[ y + 5 = -\frac{3}{4}x + \frac{3}{2} \][/tex]
[tex]\[ y = -\frac{3}{4}x + \frac{3}{2} - 5 \][/tex]
[tex]\[ y = -\frac{3}{4}x - \frac{7}{2} \][/tex]
Converting into the standard form [tex]\(Ax + By + C = 0\)[/tex]:
[tex]\[ 3x + 4y + 14 = 0 \][/tex]
So, the equation of the line parallel to [tex]\(3x + 4y + 5 = 0\)[/tex] and passing through (2, -5) is:
[tex]\[ 3x + 4y + 14 = 0 \][/tex]
### Part 2: Line Perpendicular to [tex]\(3x + 4y + 5 = 0\)[/tex]
1. Slope of the perpendicular line is the negative reciprocal of the original slope [tex]\(-\frac{3}{4}\)[/tex]. So, if the original slope [tex]\(m = -\frac{3}{4}\)[/tex], the slope [tex]\(m_{\perp}\)[/tex] of the perpendicular line will be:
[tex]\[ m_{\perp} = \frac{4}{3} \][/tex]
2. Use the point-slope form for the new line that passes through the point (2, -5) with slope [tex]\(\frac{4}{3}\)[/tex]:
[tex]\[ y - y_1 = m_{\perp}(x - x_1) \][/tex]
Where [tex]\(m_{\perp} = \frac{4}{3}\)[/tex], [tex]\((x_1, y_1) = (2, -5)\)[/tex].
3. Substitute the values:
[tex]\[ y - (-5) = \frac{4}{3}(x - 2) \][/tex]
Simplifying:
[tex]\[ y + 5 = \frac{4}{3}(x - 2) \][/tex]
[tex]\[ y + 5 = \frac{4}{3}x - \frac{8}{3} \][/tex]
[tex]\[ y = \frac{4}{3}x - \frac{8}{3} - 5 \][/tex]
[tex]\[ y = \frac{4}{3}x - \frac{23}{3} \][/tex]
Converting into the standard form [tex]\(Ax + By + C = 0\)[/tex]:
[tex]\[ 4x - 3y - 23 = 0 \][/tex]
So, the equation of the line perpendicular to [tex]\(3x + 4y + 5 = 0\)[/tex] and passing through (2, -5) is:
[tex]\[ 4x - 3y - 23 = 0 \][/tex]
### Conclusion:
- The equation of the line through (2, -5) and parallel to [tex]\(3x + 4y + 5 = 0\)[/tex] is: [tex]\(3x + 4y + 14 = 0\)[/tex].
- The equation of the line through (2, -5) and perpendicular to [tex]\(3x + 4y + 5 = 0\)[/tex] is: [tex]\(4x - 3y - 23 = 0\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.