Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's go through each part of the question step by step using the provided table:
### 1. Construct a Frequency Table
First, let's construct the frequency table from the given outcomes and the number of spins:
[tex]\[ \begin{array}{c|c} \text{Outcomes} & \text{Number of Spins} \\ \hline 1 & 13 \\ 2 & 9 \\ 3 & 24 \\ 4 & 7 \\ 5 & 11 \\ 6 & 8 \\ 7 & 10 \\ 8 & 5 \\ 9 & 7 \\ 10 & 6 \\ \end{array} \][/tex]
### 2. Experimental Probability of Spinning a 5
The experimental probability of spinning a 5 is calculated by dividing the number of times 5 was spun by the total number of spins.
[tex]\[ P(5) = \frac{\text{Number of spins of 5}}{\text{Total number of spins}} = \frac{11}{100} = 0.11 \][/tex]
### 3. Experimental Probability of Spinning a 3
The experimental probability of spinning a 3 is calculated similarly:
[tex]\[ P(3) = \frac{\text{Number of spins of 3}}{\text{Total number of spins}} = \frac{24}{100} = 0.24 \][/tex]
### 4. Experimental Probability of Spinning a Number Which is Multiple of 2
A number is a multiple of 2 if it is one of {2, 4, 6, 8, 10}. We sum the spins for these numbers:
[tex]\[ \text{Number of spins of multiples of 2} = 9 + 7 + 8 + 5 + 6 = 35 \][/tex]
The experimental probability is then:
[tex]\[ P(\text{multiple of 2}) = \frac{\text{Number of spins of multiples of 2}}{\text{Total number of spins}} = \frac{35}{100} = 0.35 \][/tex]
### 5. Experimental Probability of Spinning a Number Which is Below 6
A number is below 6 if it is one of {1, 2, 3, 4, 5}. We sum the spins for these numbers:
[tex]\[ \text{Number of spins of numbers below 6} = 13 + 9 + 24 + 7 + 11 = 64 \][/tex]
The experimental probability is then:
[tex]\[ P(\text{below 6}) = \frac{\text{Number of spins of numbers below 6}}{\text{Total number of spins}} = \frac{64}{100} = 0.64 \][/tex]
### 6. Theoretical Probability of Spinning a 2
If the spinner is fair and has 10 sectors, the probability of spinning a specific number (like 2) is:
[tex]\[ P(2) = \frac{1}{10} = 0.1 \][/tex]
Therefore, the detailed solutions for each part are as follows:
1. Frequency Table:
[tex]\[ \begin{array}{c|c} \text{Outcomes} & \text{Number of Spins} \\ \hline 1 & 13 \\ 2 & 9 \\ 3 & 24 \\ 4 & 7 \\ 5 & 11 \\ 6 & 8 \\ 7 & 10 \\ 8 & 5 \\ 9 & 7 \\ 10 & 6 \\ \end{array} \][/tex]
2. Experimental Probability of Spinning a 5: [tex]\(0.11\)[/tex]
3. Experimental Probability of Spinning a 3: [tex]\(0.24\)[/tex]
4. Experimental Probability of Spinning a Number Which is Multiple of 2: [tex]\(0.35\)[/tex]
5. Experimental Probability of Spinning a Number Which is Below 6: [tex]\(0.64\)[/tex]
6. Theoretical Probability of Spinning a 2: [tex]\(0.1\)[/tex]
### 1. Construct a Frequency Table
First, let's construct the frequency table from the given outcomes and the number of spins:
[tex]\[ \begin{array}{c|c} \text{Outcomes} & \text{Number of Spins} \\ \hline 1 & 13 \\ 2 & 9 \\ 3 & 24 \\ 4 & 7 \\ 5 & 11 \\ 6 & 8 \\ 7 & 10 \\ 8 & 5 \\ 9 & 7 \\ 10 & 6 \\ \end{array} \][/tex]
### 2. Experimental Probability of Spinning a 5
The experimental probability of spinning a 5 is calculated by dividing the number of times 5 was spun by the total number of spins.
[tex]\[ P(5) = \frac{\text{Number of spins of 5}}{\text{Total number of spins}} = \frac{11}{100} = 0.11 \][/tex]
### 3. Experimental Probability of Spinning a 3
The experimental probability of spinning a 3 is calculated similarly:
[tex]\[ P(3) = \frac{\text{Number of spins of 3}}{\text{Total number of spins}} = \frac{24}{100} = 0.24 \][/tex]
### 4. Experimental Probability of Spinning a Number Which is Multiple of 2
A number is a multiple of 2 if it is one of {2, 4, 6, 8, 10}. We sum the spins for these numbers:
[tex]\[ \text{Number of spins of multiples of 2} = 9 + 7 + 8 + 5 + 6 = 35 \][/tex]
The experimental probability is then:
[tex]\[ P(\text{multiple of 2}) = \frac{\text{Number of spins of multiples of 2}}{\text{Total number of spins}} = \frac{35}{100} = 0.35 \][/tex]
### 5. Experimental Probability of Spinning a Number Which is Below 6
A number is below 6 if it is one of {1, 2, 3, 4, 5}. We sum the spins for these numbers:
[tex]\[ \text{Number of spins of numbers below 6} = 13 + 9 + 24 + 7 + 11 = 64 \][/tex]
The experimental probability is then:
[tex]\[ P(\text{below 6}) = \frac{\text{Number of spins of numbers below 6}}{\text{Total number of spins}} = \frac{64}{100} = 0.64 \][/tex]
### 6. Theoretical Probability of Spinning a 2
If the spinner is fair and has 10 sectors, the probability of spinning a specific number (like 2) is:
[tex]\[ P(2) = \frac{1}{10} = 0.1 \][/tex]
Therefore, the detailed solutions for each part are as follows:
1. Frequency Table:
[tex]\[ \begin{array}{c|c} \text{Outcomes} & \text{Number of Spins} \\ \hline 1 & 13 \\ 2 & 9 \\ 3 & 24 \\ 4 & 7 \\ 5 & 11 \\ 6 & 8 \\ 7 & 10 \\ 8 & 5 \\ 9 & 7 \\ 10 & 6 \\ \end{array} \][/tex]
2. Experimental Probability of Spinning a 5: [tex]\(0.11\)[/tex]
3. Experimental Probability of Spinning a 3: [tex]\(0.24\)[/tex]
4. Experimental Probability of Spinning a Number Which is Multiple of 2: [tex]\(0.35\)[/tex]
5. Experimental Probability of Spinning a Number Which is Below 6: [tex]\(0.64\)[/tex]
6. Theoretical Probability of Spinning a 2: [tex]\(0.1\)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.